4 research outputs found

    Comprehensive evaluation of human-derived anti-poly-GA antibodies in cellular and animal models of C9orf72 disease

    Full text link
    Hexanucleotide G4C2 repeat expansions in the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Dipeptide repeat proteins (DPRs) generated by translation of repeat-containing RNAs show toxic effects in vivo as well as in vitro and are key targets for therapeutic intervention. We generated human antibodies that bind DPRs with high affinity and specificity. Anti-GA antibodies engaged extra- and intra-cellular poly-GA and reduced aggregate formation in a poly-GA overexpressing human cell line. However, antibody treatment in human neuronal cultures synthesizing exogenous poly-GA resulted in the formation of large extracellular immune complexes and did not affect accumulation of intracellular poly-GA aggregates. Treatment with antibodies was also shown to directly alter the morphological and biochemical properties of poly-GA and to shift poly-GA/antibody complexes to more rapidly sedimenting ones. These alterations were not observed with poly-GP and have important implications for accurate measurement of poly-GA levels including the need to evaluate all centrifugation fractions and disrupt the interaction between treatment antibodies and poly-GA by denaturation. Targeting poly-GA and poly-GP in two mouse models expressing G4C2 repeats by systemic antibody delivery for up to 16 mo was well-tolerated and led to measurable brain penetration of antibodies. Long-term treatment with anti-GA antibodies produced improvement in an open-field movement test in aged C9orf72450 mice. However, chronic administration of anti-GA antibodies in AAV-(G4C2)149 mice was associated with increased levels of poly-GA detected by immunoassay and did not significantly reduce poly-GA aggregates or alleviate disease progression in this model. Keywords: C9orf72; amyotrophic lateral sclerosis; dipeptide repeat proteins; frontotemporal dementia; immunotherap

    Comprehensive preclinical evaluation of human-derived anti-poly-GA antibodies in cellular and animal models of C9ORF72 disease

    Full text link
    Hexanucleotide G4C2 repeat expansions in the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Dipeptide repeat proteins (DPRs) generated by translation of repeat-containing RNAs show toxic effects in vivo as well as in vitro and are key targets for therapeutic intervention. We generated human antibodies that bind DPRs with high affinity and specificity. Anti-GA antibodies engaged extra- and intracellular poly-GA and reduced aggregate formation in a poly-GA over-expressing human cell line. However, antibody treatment in human neuronal cultures synthesizing exogenous poly-GA resulted in the formation of large extracellular immune complexes and did not affect accumulation of intracellular poly-GA aggregates. Treatment with antibodies was also shown to directly alter the morphological and biochemical properties of poly-GA and to shift poly-GA/antibody complexes to more rapidly sedimenting ones. These alterations were not observed with poly-GP and have important implications for accurate measurement of poly-GA levels including the need to evaluate all centrifugation fractions and disrupt the interaction between treatment antibodies and poly-GA by denaturation. Targeting poly-GA and poly-GP in two mouse models expressing G4C2 repeats by systemic antibody delivery for up to 16 months was well-tolerated and led to measurable brain penetration of antibodies. Long term treatment with anti-GA antibodies produced improvement in an open field movement test in aged C9ORF72450 mice. However, chronic administration of anti-GA antibodies in AAV-(G4C2)149 mice was associated with increased levels of poly-GA detected by immunoassay and did not significantly reduce poly-GA aggregates or alleviate disease progression in this model. Significance Immunotherapy has been proposed for neurodegenerative disorders including Alzheimer’s or Parkinson’s diseases. Recent reports using antibodies against poly-GA or active immunization suggested similar immunotherapy in ALS/FTD caused by repeat expansion in the C9ORF72 gene (1, 2). Here, we systematically characterized human antibodies against multiple DPR species and tested the biological effects of antibodies targeting poly-GA in different cellular and mouse models. Target engagement was shown in three independent cellular models. Anti-GA antibodies reduced the number of intracellular poly-GA aggregates in human T98G cells but not in cultured human neurons. Whereas chronic anti-GA treatment in BAC C9ORF72450 mice did not impact poly-GA levels and modestly improved one behavioral phenotype, poly-GA levels detected by immunoassays were increased and disease progression was unaltered in AAV-(G4C2)149 mice

    Development of an aggregate-selective, human-derived α-synuclein antibody BIIB054 that ameliorates disease phenotypes in Parkinson's disease models

    Get PDF
    Aggregation of α-synuclein (α-syn) is neuropathologically and genetically linked to Parkinson's disease (PD). Since stereotypic cell-to-cell spreading of α-syn pathology is believed to contribute to disease progression, immunotherapy with antibodies directed against α-syn is considered a promising therapeutic approach for slowing disease progression. Here we report the identification, binding characteristics, and efficacy in PD mouse models of the human-derived α-syn antibody BIIB054, which is currently under investigation in a Phase 2 clinical trial for PD. BIIB054 was generated by screening human memory B-cell libraries from healthy elderly individuals. Epitope mapping studies conducted using peptide scanning, X-ray crystallography, and mutagenesis show that BIIB054 binds to α-syn residues 1-10. BIIB054 is highly selective for aggregated forms of α-syn with at least an 800-fold higher apparent affinity for fibrillar versus monomeric recombinant α-syn and a strong preference for human PD brain tissue. BIIB054 discriminates between monomers and oligomeric/fibrillar forms of α-syn based on high avidity for aggregates, driven by weak monovalent affinity and fast binding kinetics. In efficacy studies in three different mouse models with intracerebrally inoculated preformed α-syn fibrils, BIIB054 treatment attenuated the spreading of α-syn pathology, rescued motor impairments, and reduced the loss of dopamine transporter density in dopaminergic terminals in striatum. The preclinical data reported here provide a compelling rationale for clinical development of BIIB054 for the treatment and prevention of PD
    corecore