15 research outputs found

    In vivo human comparison of intravascular ultrasonography and angiography

    No full text
    This study evaluates the in vivo correlation of intravascular ultrasonography and uniplanar angiography in determining the luminal dimensions of normal and moderately atherosclerotic human arteries. Five French and 8F rotating A scan intravascular ultrasound catheters were used to obtain 48 images in four superficial femoral arteries, five iliac arteries, and one aorta in eight patients undergoing vascular surgery. Cross-sectional areas measured by intravascular ultrasonography were compared to cross-sectional areas calculated by uniplanar angiography of the same location in the vessel. Maximum and minimum luminal diameters were also measured from intravascular ultrasound images. An ellipticity index was defined as the maximum/minimum diameter ratio (max/min) and ranged from 1.0 to 1.8 (mean, 1.2). Comparison of the cross-sectional areas measured from intravascular ultrasound images and those calculated from uniplanar angiography showed no significant difference at any level of ellipticity studied. However, when the values of cross-sectional areas were analyzed in groups corresponding to the diameter of the vessel, that is, aortic, iliac, and femoral, the values for the iliac arteries calculated from uniplanar angiography were significantly greater by 9.8% ± 0.7% (n = 29, p = 0.03) when compared to those measured by intravascular ultrasonography. In addition to providing accurate luminal determinations, intravascular ultrasound images displayed transmural morphology, the location and character of the atherosclerotic lesions, and the thickness of the vessel wall. We conclude that intravascular ultrasound imaging provides accurate, novel information regarding human vessels and that this technology may play a significant role in future diagnostic and interventional therapies

    In-vivo intravascular ultrasound in human ileo-femoral vessels

    No full text
    This study evaluates the ability of intravascular ultrasound (IUS) to image normal and mildly diseased human ileo-femoral vessels during angioplasty or vascular bypass procedures. Five Fr. and 8Fr. rotating A scan IUS catheters were used to obtain 43 images in 4 superficial femoral arteries, and 5 iliac arteries in 8 vascular surgery patients. Luminal cross sectional (LCS) areas measured by IUS were compared to LCS areas calculated by uniplanar angiography (ANGIO) at the same location in the vessel. The correlation between the areas (IUS vs ANGIO) for all images was significant (n = 43, r = 0.90, P<0.05). Mean LCS area calculated from ANGIO (33.7 +/- 21 mm ) was greater than LCS area measured by IUS (30.6 +/- 19.5 mm ) with n = 43; P = 0.02. In addition to providing accurate luminal determinations, IUS images displayed transmural morphology, the location of the atherosclerotic lesions and the thickness of the vessel wall. We conclude that IUS imaging provides accurate, novel information regarding human vessel wall anatomy and luminal dimensions. This technology may play a significant role in future diagnostic and interventional therapies

    Intravascular Ultrasonography

    No full text
    Intravascular ultrasonography is developing rapidly as a method for defining the transmural anatomy of vascular structures, with diagnostic and therapeutic applications. The ultrasound technology not only has unique diagnostic capabilities by defining the distribution and character of lesions, but also provides accurate control information regarding efficacy of angioplasty methods. An exciting recent development is the three-dimensional reconstruction of two-dimensional images which permits global examination of luminal and transmural vessel morphology. This technology may enable improved guidance of intraluminal devices to enhance lesion removal without damaging adjacent normal wall structure and appropriate device selection by differentiating specific plaque characteristics
    corecore