21 research outputs found

    Ultrashort Free-Electron Laser X-ray Pulses

    Get PDF
    For the investigation of processes happening on the time scale of the motion of bound electrons, well-controlled X-ray pulses with durations in the few-femtosecond and even sub-femtosecond range are a necessary prerequisite. Novel free-electron lasers sources provide these ultrashort, high-brightness X-ray pulses, but their unique aspects open up concomitant challenges for their characterization on a suitable time scale. In this review paper we describe progress and results of recent work on ultrafast pulse characterization at soft and hard X-ray free-electron lasers. We report on different approaches to laser-assisted time-domain measurements, with specific focus on single-shot characterization of ultrashort X-ray pulses from self-amplified spontaneous emission-based and seeded free-electron lasers. The method relying on the sideband measurement of X-ray electron ionization in the presence of a dressing optical laser field is described first. When the X-ray pulse duration is shorter than half the oscillation period of the streaking field, few-femtosecond characterization becomes feasible via linear streaking spectroscopy. Finally, using terahertz fields alleviates the issue of arrival time jitter between streaking laser and X-ray pulse, but compromises the achievable temporal resolution. Possible solutions to these remaining challenges for single-shot, full time-energy characterization of X-ray free-electron laser pulses are proposed in the outlook at the end of the review

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Electro -optic characterization of femtosecond electron bunches.

    Full text link
    Linear-accelerator-based x-ray sources will revolutionize ultrafast science due to their unprecedented brightness and short pulse duration. However, time-resolved studies at the resolution of the x-ray pulse duration are severely hampered by the inability to precisely synchronize an external laser to the x-ray source. At the Sub-Picosecond Pulse Source (SPPS) at the Stanford Linear Accelerator Center (SLAC) we solved this problem by measuring the arrival time of each high energy electron bunch. We use single-shot spatially resolved electro-optic sampling (EOS)to generate a temporal image of the bunch. An ultrafast laser pulse (135 fs) passes through an electro-optic crystal adjacent to the 28.5 GeV electron beam at SLAC. The re fractive index of the crystal is distorted by the strong electromagnetic fields of the ultra-relativistic electrons, and this transient birefringence is imprinted on the laser polarization. A polarizer decodes this signal, producing a time-dependent image of the electron bunch. The signal is a convolution of the laser probe pulse duration, the EO crystal properties, and the electron bunch length which is calculated to be 80fs FWHM at SPPS. Currently, the measurement at EOS is resolution limited, primarily by the EO crystal response to 300fs FWHM. The centroid of the signal, which gives the arrival time of the electron bunch, can be determined to30fs (10% of the EO signal FWHM). The results described in this thesis are the highest resolution direct measurement of electron bunch charge distribution at an accelerator facility to date. Knowledge of the bunch duration is critical because it determines the duration of the x-ray pulse delivered to an experiment. The bunch duration is also a useful accelerator tuning parameter. We present a direct comparison between the electron bunch arrival time and the x-ray pulse. The x-ray pulse arrival time is obtained through a destructive measurement. The comparison shows agreement to within 60fs rms. This small discrepancy is due in part to environmental fluctuations and additional error in determining the arrival time of the x-ray pulse. We demonstrate that EOS allows observation of atomic-scale ultrafast dynamics at the SPPS source.Ph.D.Condensed matter physicsOpticsPure SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/124751/2/3163764.pd

    Generation of millijoule-level sub-5 fs violet laser pulses

    Full text link
    We demonstrate the generation, spectral broadening and post-compression of second harmonic pulses using a thin beta barium borate (BBO) crystal on a fused-silica substrate as the nonlinear interaction medium. By combining second harmonic generation in the BBO crystal with self-phase modulation in the fused-silica substrate, we efficiently generate millijoule-level broadband violet pulses from a single optical component. The second harmonic spectrum covers a range from long wave ultraviolet (down to 310 nm) to visible (up to 550 nm) with a bandwidth of 65 nm. Subsequently, we compress the second harmonic beam to a duration of 4.8 fs with a pulse energy of 0.64 mJ (5 fs with a pulse energy of 1.05 mJ) using chirped mirrors. The all-solid free-space apparatus is compact, robust and pulse energy scalable, making it highly advantageous for generating intense second harmonic pulses from near-infrared femtosecond lasers in the sub-5 fs regime

    Generation of millijoule-level sub-5 fs violet laser pulses

    Full text link
    We demonstrate the generation, spectral broadening and post-compression of second harmonic pulses using a thin beta barium borate (BBO) crystal on a fused-silica substrate as the nonlinear interaction medium. By combining second harmonic generation in the BBO crystal with self-phase modulation in the fused-silica substrate, we efficiently generate millijoule-level broadband violet pulses from a single optical component. The second harmonic spectrum covers a range from long wave ultraviolet (down to 310 nm) to visible (up to 550 nm) with a bandwidth of 65 nm. Subsequently, we compress the second harmonic beam to a duration of 4.8 fs with a pulse energy of 0.64 mJ (5 fs with a pulse energy of 1.05 mJ) using chirped mirrors. The all-solid free-space apparatus is compact, robust and pulse energy scalable, making it highly advantageous for generating intense second harmonic pulses from near-infrared femtosecond lasers in the sub-5 fs regime.ISSN:2095-4719ISSN:2052-328
    corecore