6,834 research outputs found

    Non-linear Coulomb blockade microscopy of a correlated one-dimensional quantum dot

    Full text link
    We evaluate the chemical potential of a one-dimensional quantum dot, coupled to an atomic force microscope tip. The dot is described within the Luttinger liquid framework and the conductance peaks positions as a function of the tip location are calculated in the linear and non-linear transport regimes for an arbitrary number of particles. The differences between the chemical potential oscillations induced by Friedel and Wigner terms are carefully analyzed in the whole range of interaction strength. It is shown that Friedel oscillations, differently from the Wigner ones, are sensitive probes to detect excited spin states and collective spin density waves involved in the transport.Comment: 4 figure

    Temperature-induced emergence of Wigner correlations in a STM-probed one-dimensional quantum dot

    Full text link
    The temperature-induced emergence of Wigner correlations over finite-size effects in a strongly interacting one-dimensional quantum dot are studied in the framework of the spin coherent Luttinger liquid. We demonstrate that, for temperatures comparable with the zero mode spin excitations, Friedel oscillations are suppressed by the thermal fluctuations of higher spin modes. On the other hand, the Wigner oscillations, sensitive to the charge mode only, are stable and become more visible. This behavior is proved to be robust both in the thermal electron density and in the linear conductance in the presence of an STM tip. This latter probe is not directly proportional to the electron density and may confirm the above phenomena with complementary and additional information

    AFM probe for the signatures of Wigner correlations in the conductance of a one-dimensional quantum dot

    Full text link
    The transport properties of an interacting one-dimensional quantum dot capacitively coupled to an atomic force microscope probe are investigated. The dot is described within a Luttinger liquid framework which captures both Friedel and Wigner oscillations. In the linear regime, we demonstrate that both the conductance peak position and height oscillate as the tip is scanned along the dot. A pronounced beating pattern in the conductance maximum is observed, connected to the oscillations of the electron density. Signatures of the effects induced by a Wigner molecule are clearly identified and their stability against the strength of Coulomb interactions are analyzed. While the oscillations of the peak position due to Wigner get enhanced at strong interactions, the peak height modulations are suppressed as interactions grow. Oscillations due to Friedel, on the other hand, are robust against interaction.Comment: 9 figure

    Theory of the STM detection of Wigner molecules in spin incoherent CNTs

    Full text link
    The linear conductance of a carbon nanotube quantum dot in the Wigner molecule regime, coupled to two scanning tunnel microscope tips is inspected. Considering the high temperature regime, the nanotube quantum dot is described by means of the spin-incoherent Luttinger liquid picture. The linear conductance exhibits spatial oscillations induced by the presence of the correlated, molecular electron state. A power-law scaling of the electron density and of the conductance as a function of the interaction parameter are found. They confirm local transport as a sensitive tool to investigate the Wigner molecule. The double-tip setup allows to explore different transport regimes with different shapes of the spatial modulation, all bringing information about the Wigner molecule

    Crystallization of fractional charges in a strongly interacting quasi-helical quantum dot

    Full text link
    The ground-state electron density of a one-dimensional spin-orbit coupled quantum dot with a Zeeman term and strong electron interaction is studied at the fractional helical liquid points. We show that at fractional filling factors ν=(2n+1)1\nu=(2n+1)^{-1} (with nn a non-negative integer) the density oscillates with N0/νN_{0}/\nu peak. For n1n\geq 1 a number of peaks larger than the number of electrons N0N_{0} suggests that a crystal of fractional quasi-particles with charge νe\nu e (with ee the electron charge) occurs. The reported effect is amenable of verification via transport measurements in charged AFM-coupled dot

    Probing Wigner correlations in a suspended carbon nanotube

    Full text link
    The influence of the electron-vibron coupling on the transport properties of a strongly interacting quantum dot built in a suspended carbon nanotube is analyzed. The latter is probed by a charged AFM tip scanned along the axis of the CNT which induces oscillations of the chemical potential and of the linear conductance. These oscillations are due to the competition between finite-size effects and the formation of a Wigner molecule for strong interactions. Such oscillations are shown to be suppressed by the electron-vibron coupling. The suppression is more pronounced in the regime of weak Coulomb interactions, which ensures that probing Wigner correlations in such a system is in principle possible

    Testing for a change in persistence in the presence of non-stationary volatility

    Get PDF
    In this paper we consider tests for the null of (trend-) stationarity against the alternative of a change in persistence at some (known or unknown) point in the observed sample, either from I(0) to I(1) behaviour or vice versa, of, inter alia, Kim (2000). We show that in circumstances where the innovation process displays non-stationary unconditional volatility of a very general form, which includes single and multiple volatility breaks as special cases, the ratio-based statistics used to test for persistence change do not have pivotal limiting null distributions. Numerical evidence suggests that this can cause severe over-sizing in the tests. In practice it may therefore be hard to discriminate between persistence change processes and processes with constant persistence but which display time-varying unconditional volatility. We solve the identified inference problem by proposing wild bootstrap-based implementations of the tests. Monte Carlo evidence suggests that the bootstrap tests perform well in finite samples. An empirical application to a variety of measures of U.S. price inflation data is provided.Persistence change; non-stationary volatility; wild bootstrap

    Correlation functions for the detection of Wigner molecules in a one-channel Luttinger liquid quantum dot

    Full text link
    In one-channel, finite-size Luttinger one-dimensional quantum dots, both Friedel oscillations and Wigner correlations induce oscillations in the electron density with the same wavelength, pinned at the same position. Therefore, observing such a property does not provide any hint about the formation of a Wigner molecule when electrons interact strongly and other tools must be employed to assess the formation of such correlated states. We compare here the behavior of three different correlation functions and demonstrate that the integrated two point correlation function, which represents the probability density of finding two particles at a given distance, is the only faithful estimator for the formation of a correlated Wigner molecule.Comment: 6 pages, 5 figure

    Theory of measuring the "Luttinger-g" of a one-dimensional quantum dot

    Full text link
    We study electron transport through a quantum dot in a Tomonaga-Luttinger liquid with an inhomogeneity induced either by a non-uniform electron interaction or by the presence of tunnel resistances of contacts. The non-analytic temperature behavior of the conductance peaks show crossovers determined by the different energy scales associated with the dot and the inhomogeneity despite the Coulomb blockade remains intact. This suggests an explanation of recent findings in semiconductor quantum wires and carbon nanotubes.Comment: 4 pages, 3 colour figures, to be published with Phys. Rev.
    corecore