225 research outputs found

    Dynamical Structure Factors for Dimerized Spin Systems

    Full text link
    We discuss the transition strength between the disordered ground state and the basic low-lying triplet excitation for interacting dimer materials by presenting theoretical calculations and series expansions as well as inelastic neutron scattering results for the material KCuCl_3. We describe in detail the features resulting from the presence of two differently oriented dimers per unit cell and show how energies and spectral weights of the resulting two modes are related to each other. We present results from the perturbation expansion in the interdimer interaction strength and thus demonstrate that the wave vector dependence of the simple dimer approximation is modified in higher orders. Explicit results are given in 10th order for dimers coupled in 1D, and in 2nd order for dimers coupled in 3D with application to KCuCl_3 and TlCuCl_3.Comment: 17 pages, 6 figures, part 2 is based on cond-mat/021133

    Bose-Einstein condensation of magnons in TlCuCl3_3

    Full text link
    A quantitative study of the field-induced magnetic ordering in TlCuCl3_3 in terms of a Bose-Einstein condensation (BEC) of magnons is presented. It is shown that the hitherto proposed simple BEC scenario is in quantitative and qualitative disagreement with experiment. It is further shown that even very small Dzyaloshinsky-Moriya interactions or a staggered gg tensor component of a certain type can change the BEC picture qualitatively. Such terms lead to a nonzero condensate density for all temperatures and a gapped quasiparticle spectrum. Including this type of interaction allows us to obtain good agreement with experimental data.Comment: 2 pages, 2 figures, submitted to SCES'0

    Field-Induced Magnetic Ordering in the Quantum Spin System KCuCl3_3

    Full text link
    KCuCl3_3 is a three-dimensional coupled spin-dimer system and has a singlet ground state with an excitation gap Δ/kB=31{\Delta}/k_{\rm B}=31 K. High-field magnetization measurements for KCuCl3_3 have been performed in static magnetic fields of up to 30 T and in pulsed magnetic fields of up to 60 T. The entire magnetization curve including the saturation region was obtained at T=1.3T=1.3 K. From the analysis of the magnetization curve, it was found that the exchange parameters determined from the dispersion relations of the magnetic excitations should be reduced, which suggests the importance of the renormalization effect in the magnetic excitations. The field-induced magnetic ordering accompanied by the cusplike minimum of the magnetization was observed as in the isomorphous compound TlCuCl3_3. The phase boundary was almost independent of the field direction, and is represented by the power law. These results are consistent with the magnon Bose-Einstein condensation picture for field-induced magnetic ordering.Comment: 9 pages, 7 figures, 9 eps files, revtex styl

    Dispersive magnetic excitations in the S=1 antiferromagnet Ba3_3Mn2_2O8_8

    Full text link
    We present powder inelastic neutron scattering measurements of the S=1 dimerized antiferromagnet Ba3_3Mn2_2O8_8. The T=1.4T=1.4 K magnetic spectrum exhibits a spin-gap of Δ≈1.0\Delta \approx 1.0 meV and a dispersive spectrum with a bandwidth of approximately 1.5 meV. Comparison to coupled dimer models describe the dispersion and scattering intensity accurately and determine the exchange constants in Ba3_3Mn2_2O8_8. The wave vector dependent scattering intensity confirms the proposed S=1 dimer bond. Temperature dependent measurements of the magnetic excitations indicate the presence of both singlet-triplet and thermally activated triplet-quintet excitations.Comment: 8 pages, 8 figures, Submitted to Physical Review B, Resubmited versio

    Pressure-Induced Magnetic Quantum Phase Transition in Gapped Spin System KCuCl3

    Full text link
    Magnetization and neutron elastic scattering measurements under a hydrostatic pressure were performed on KCuCl3, which is a three-dimensionally coupled spin dimer system with a gapped ground state. It was found that an intradimer interaction decreases with increasing pressure, while the sum of interdimer interactions increases. This leads to the shrinkage of spin gap. A quantum phase transition from a gapped state to an antiferromagnetic state occurs at Pc ? 8.2 kbar. For P > P c, magnetic Bragg reflections were observed at reciprocal lattice points equivalent to those for the lowest magnetic excitation at zero pressure. This confirms that the spin gap decreases and closes under applied pressure.Comment: 7 pages, 10 figures, submitted to J. Phys. Soc. Jp

    Pasture Management in the US Midwest – An Assessment of Current Practices and Future Opportunities

    Get PDF
    Managed grazing offers significant potential to improve the sustainability of livestock farms in the US Midwest, however the benefits of managed grazing are largely influenced by the management practices employed on farm. The objective of this study was to gain an understanding of current grazing practices on Midwest farms and to identify the knowledge and support needs of graziers. A total of 185 responses were received from a range of different enterprises including dairy, beef, and sheep production. Results show a substantial degree of variation in grazing management practices between respondents and highlights significant scope for improvement on farms particularly in the areas of pasture measurement and budgeting, and grazing infrastructure. Reported benefits of managed grazing included lower environmental impact, better pasture and animal performance, better animal health and welfare, and lower costs. Challenges with managed grazing included time and labor input, maintaining pasture quantity and quality during the grazing season, adverse weather conditions such as excessive rain and drought, and animal health challenges such as heat stress, parasites and in some cases coyotes. The study highlighted opportunities for research and extension providers to better support farmers with information and advice and identified knowledge gaps in areas such as pasture species selection, soil fertility, grazing infrastructure, pasture budgeting, legumes, and pasture measurement. The study successfully gained an insight into graziers in the Midwest, the outputs of which, will be valuable to a number of key stakeholders going forward, including researchers, extension agents, farmers and policy makers

    Field- and pressure-induced magnetic quantum phase transitions in TlCuCl_3

    Full text link
    Thallium copper chloride is a quantum spin liquid of S = 1/2 Cu^2+ dimers. Interdimer superexchange interactions give a three-dimensional magnon dispersion and a spin gap significantly smaller than the dimer coupling. This gap is closed by an applied hydrostatic pressure of approximately 2kbar or by a magnetic field of 5.6T, offering a unique opportunity to explore the both types of quantum phase transition and their associated critical phenomena. We use a bond-operator formulation to obtain a continuous description of all disordered and ordered phases, and thus of the transitions separating these. Both pressure- and field-induced transitions may be considered as the Bose-Einstein condensation of triplet magnon excitations, and the respective phases of staggered magnetic order as linear combinations of dimer singlet and triplet modes. We focus on the evolution with applied pressure and field of the magnetic excitations in each phase, and in particular on the gapless (Goldstone) modes in the ordered regimes which correspond to phase fluctuations of the ordered moment. The bond-operator description yields a good account of the magnetization curves and of magnon dispersion relations observed by inelastic neutron scattering under applied fields, and a variety of experimental predictions for pressure-dependent measurements.Comment: 20 pages, 17 figure

    Drastic Change of Magnetic Phase Diagram in Doped Quantum Antiferromagnet TlCu1−x_{1-x}Mgx_xCl3_3

    Full text link
    TlCuCl3_3 is a coupled spin dimer system, which has a singlet ground state with an excitation gap of Δ/gμB\Delta/g\mu_{\mathrm B} = 5.5 T. TlCu1−x_{1-x}Mgx_xCl3_3 doped with nonmagnetic Mg2+^{2+} ions undergoes impurity-induced magnetic ordering. Because triplet excitation with a finite gap still remains, this doped system can also undergo magnetic-field-induced magnetic ordering. By specific heat measurements and neutron scattering experiments under a magnetic field, we investigated the phase diagram in TlCu1−x_{1-x}Mgx_xCl3_3 with x∼0.01x\sim 0.01, and found that impurity- and field-induced ordered phases are the same. The gapped spin liquid state observed in pure TlCuCl3_3 is completely wiped out by the small amount of doping.Comment: 9 pages, 5 figures, jpsj2 class file, to be published in J. Phy. Soc. Jpn. Vol.75 No.3 (2006); layout changed, unrelated figure remove

    Neutron Scattering Study of Magnetic Ordering and Excitations in the Doped Spin Gap System Tl(Cu1−x_{1-x}Mgx_x)Cl3_3

    Full text link
    Neutron elastic and inelastic scattering measurements have been performed in order to investigate the spin structure and the magnetic excitations in the impurity-induced antiferromagnetic ordered phase of the doped spin gap system Tl(Cu1−x_{1-x}Mgx_x)Cl3_3 with x=0.03x=0.03. The magnetic Bragg reflections indicative of the ordering were observed at Q=(h,0,l){\pmb Q}=(h, 0, l) with integer hh and odd ll below TN=3.45T_{\rm N}=3.45 K. It was found that the spin structure of the impurity-induced antiferromagnetic ordered phase on average in Tl(Cu1−x_{1-x}Mgx_x)Cl3_3 with x=0.03x=0.03 is the same as that of the field-induced magnetic ordered phase for H∥b{\pmb H} \parallel b in the parent compound TlCuCl3_3. The triplet magnetic excitation was clearly observed in the a∗a^*-c∗c^* plane and the dispersion relations of the triplet excitation were determined along four different directions. The lowest triplet excitation corresponding to the spin gap was observed at Q=(h,0,l){\pmb Q}=(h, 0, l) with integer hh and odd ll, as observed in TlCuCl3_3. It was also found that the spin gap increases steeply below TNT_{\rm N} upon decreasing temperature. This strongly indicates that the impurity-induced antiferromagnetic ordering coexists with the spin gap state in Tl(Cu1−x_{1-x}Mgx_x)Cl3_3 with x=0.03x=0.03.Comment: 24 pages, 7 figures, 11 eps files, revtex style, will appear in Phys. Rev.

    Ab initio investigation of VOSeO3, a spin gap system with coupled spin dimers

    Full text link
    Motivated by an early experimental study of VOSeO3, which suggested that it is a quasi-2D system of weakly coupled spin dimers with a small spin gap, we have investigated the electronic structure of this material via density-functional calculations. These ab initio results indicate that the system is better thought of as an alternating spin-1/2 chain with moderate interchain interactions, an analog of (VO)2P2O7. The potential interest of this system for studies in high magnetic field given the presumably small value of the spin gap is emphasized.Comment: 4 pages, 5 figure
    • …
    corecore