168 research outputs found

    Pressure-Induced Magnetic Quantum Phase Transitions from Gapped Ground State in TlCuCl3

    Full text link
    Magnetization maesurements under hydrostatic pressure were performed on an S=1/2 coupled spin system TlCuCl3 with a gapped ground state under magnetic field H parallel to the [2,0,1] direction. With increasing applied pressure P, the gap decreases and closes completely at Pc=0.42 kbar. For P>Pc, TlCuCl3 undergoes antiferromagnetic ordering. A spin-flop transition was observed at Hsf=0.7T. The spin-flop field is approximately independent of pressure, although the sublattice magnetization increases with pressure. The gap and Neel temperature are presented as function is attributed to to the relative enhancement of the interdimer exchange interactions compared with the intradimer exchange interaction.Comment: 4pages,3figures To be published in J. Phys. Soc. Jpn. Vol.73 No.1

    Neutron Diffraction Study of the Pressure-Induced Magnetic Ordering in the Spin Gap System TlCuCl3_3

    Full text link
    Neutron elastic scattering measurements have been performed under the hydrostatic pressure in order to investigate the spin structure of the pressure-induced magnetic ordering in the spin gap system TlCuCl3_3. Below the ordering temperature TN=16.9T_{\rm N}=16.9 K for the hydrostatic pressure P=1.48P=1.48 GPa, magnetic Bragg reflections were observed at the reciprocal lattice points {\mib Q}=(h, 0, l) with integer hh and odd ll, which are equivalent to those points with the lowest magnetic excitation energy at ambient pressure. This indicates that the spin gap closes due to the applied pressure. The spin structure of the pressure-induced magnetic ordered state for P=1.48P=1.48 GPa was determined.Comment: 4 pages, 3 figures, 3 eps files, jpsj2.cls styl

    Frustration-Induced Two Dimensional Quantum Disordered Phase in Piperazinium Hexachlorodicuprate

    Full text link
    Piperazinium Hexachlorodicuprate (PHCC) is shown to be a frustrated quasi-two-dimensional quantum Heisenberg antiferromagnet with a gapped spectrum. Zero-field inelastic neutron scattering and susceptibility and specific heat measurements as a function of applied magnetic field are presented. At T = 1.5 K, the magnetic excitation spectrum is dominated by a single propagating mode with a gap, Delta = 1 meV, and bandwidth of approximately 1.8 meV in the (h0l) plane. The mode has no dispersion along the b* direction indicating that neighboring a-c planes of the triclinic structure are magnetically decoupled. The heat capacity shows a reduction of the gap as a function of applied magnetic field in agreement with a singlet-triplet excitation spectrum. A field-induced ordered phase is observed in heat capacity and magnetic susceptibility measurements for magnetic fields greater than H_c1 approximately equal to 7.5 Tesla. Analysis of the neutron scattering data reveals the important exchange interactions and indicates that some of these are highly frustrated.Comment: 13 pages with 14 figures, 7 pages of text, 6 pages of figures. Submitted to Phys. Rev. B 4/7/2001. email comments to [email protected] or [email protected]

    Magnetization plateaux in dimerized spin ladder arrays

    Get PDF
    We investigate the ground state magnetization plateaux appearing in spin 1/2 two-leg ladders built up from dimerized antiferromagnetic Heisenberg chains and dimerized zig-zag interchain couplings. Using both Abelian bosonization and Lanczos methods we find that the system yields rather unusual plateaux and exhibits massive and massless phases for specific choices or ``tuning'' of exchange interactions. The relevance of this behavior in the study of NH_4CuCl_3 is discussed.Comment: 9 pages, RevTeX, 11 postscript figure

    Frustrated 3-Dimensional Quantum Spin Liquid in CuHpCl

    Full text link
    Inelastic neutron scattering measurements are reported for the quantum antiferromagnetic material Cu_2(C_5H_12N_2)_2Cl_4 (CuHpCl). The magnetic excitation spectrum forms a band extending from 0.9 meV to 1.4 meV. The spectrum contains two modes that disperse throughout the a-c plane of the monoclinic unit cell with less dispersion along the unique b-axis. Simple arguments based on the measured dispersion relations and the crystal structure show that a spin ladder model is inappropriate for describing CuHpCl. Instead, it is proposed that hydrogen bond mediated exchange interactions between the bi-nuclear molecular units yield a three-dimensional interacting spin system with a recurrent triangular motif similar to the Shastry-Sutherland Model (SSM). Model independent analysis based on the first moment sum rule shows that at least four distinct spin pairs are strongly correlated and that two of these, including the dimer bond of the corresponding SSM, are magnetically frustrated. These results show that CuHpCl should be classified as a frustration induced three dimensional quantum spin liquid.Comment: 13 pages, 17 figures (Color) ReSubmitted to Phys. Rev. B 9/21/2001 resubmission has new content email comments to [email protected] or [email protected]
    • …
    corecore