237 research outputs found
Ehrenfest relations and magnetoelastic effects in field-induced ordered phases
Magnetoelastic properties in field-induced magnetic ordered phases are
studied theoretically based on a Ginzburg-Landau theory. A critical field for
the field-induced ordered phase is obtained as a function of temperature and
pressure, which determine the phase diagram. It is found that magnetic field
dependence of elastic constant decreases discontinuously at the critical field,
Hc, and that it decreases linearly with field in the ordered phase (H>Hc). We
found an Ehrenfest relation between the field dependence of the elastic
constant and the pressure dependence of critical field. Our theory provides the
theoretical form for magnetoelastic properties in field- and pressure-induced
ordered phases.Comment: 7 pages, 3 figure
Dispersive magnetic excitations in the S=1 antiferromagnet BaMnO
We present powder inelastic neutron scattering measurements of the S=1
dimerized antiferromagnet BaMnO. The K magnetic spectrum
exhibits a spin-gap of meV and a dispersive spectrum with
a bandwidth of approximately 1.5 meV. Comparison to coupled dimer models
describe the dispersion and scattering intensity accurately and determine the
exchange constants in BaMnO. The wave vector dependent scattering
intensity confirms the proposed S=1 dimer bond. Temperature dependent
measurements of the magnetic excitations indicate the presence of both
singlet-triplet and thermally activated triplet-quintet excitations.Comment: 8 pages, 8 figures, Submitted to Physical Review B, Resubmited
versio
Pressure-Induced Magnetic Quantum Phase Transition in Gapped Spin System KCuCl3
Magnetization and neutron elastic scattering measurements under a hydrostatic
pressure were performed on KCuCl3, which is a three-dimensionally coupled spin
dimer system with a gapped ground state. It was found that an intradimer
interaction decreases with increasing pressure, while the sum of interdimer
interactions increases. This leads to the shrinkage of spin gap. A quantum
phase transition from a gapped state to an antiferromagnetic state occurs at Pc
? 8.2 kbar. For P > P c, magnetic Bragg reflections were observed at reciprocal
lattice points equivalent to those for the lowest magnetic excitation at zero
pressure. This confirms that the spin gap decreases and closes under applied
pressure.Comment: 7 pages, 10 figures, submitted to J. Phys. Soc. Jp
Spin-resonance modes of the spin-gap magnet TlCuCl_3
Three kinds of magnetic resonance signals were detected in crystals of the
spin-gap magnet TlCuCl_3.
First, we have observed the microwave absorption due to the excitation of the
transitions between the singlet ground state and the excited triplet states.
This mode has the linear frequency-field dependence corresponding to the
previously known value of the zero-field spin-gap of 156 GHz and to the closing
of spin-gap at the magnetic field H_c of about 50 kOe.
Second, the thermally activated resonance absorption due to the transitions
between the spin sublevels of the triplet excitations was found. These
sublevels are split by the crystal field and external magnetic field.
Finally, we have observed antiferromagnetic resonance absorption in the
field-induced antiferromagnetic phase above the critical field H_c. This
resonance frequency is strongly anisotropic with respect to the direction of
the magnetic field.Comment: v.2: typo correction (one of the field directions was misprinted in
the v.1
Neutron Diffraction Study of the Pressure-Induced Magnetic Ordering in the Spin Gap System TlCuCl
Neutron elastic scattering measurements have been performed under the
hydrostatic pressure in order to investigate the spin structure of the
pressure-induced magnetic ordering in the spin gap system TlCuCl. Below the
ordering temperature K for the hydrostatic pressure
GPa, magnetic Bragg reflections were observed at the reciprocal lattice points
{\mib Q}=(h, 0, l) with integer and odd , which are equivalent to
those points with the lowest magnetic excitation energy at ambient pressure.
This indicates that the spin gap closes due to the applied pressure. The spin
structure of the pressure-induced magnetic ordered state for GPa was
determined.Comment: 4 pages, 3 figures, 3 eps files, jpsj2.cls styl
Pressure-Induced Magnetic Quantum Phase Transitions from Gapped Ground State in TlCuCl3
Magnetization maesurements under hydrostatic pressure were performed on an
S=1/2 coupled spin system TlCuCl3 with a gapped ground state under magnetic
field H parallel to the [2,0,1] direction. With increasing applied pressure P,
the gap decreases and closes completely at Pc=0.42 kbar. For P>Pc, TlCuCl3
undergoes antiferromagnetic ordering. A spin-flop transition was observed at
Hsf=0.7T. The spin-flop field is approximately independent of pressure,
although the sublattice magnetization increases with pressure. The gap and Neel
temperature are presented as function is attributed to to the relative
enhancement of the interdimer exchange interactions compared with the
intradimer exchange interaction.Comment: 4pages,3figures To be published in J. Phys. Soc. Jpn. Vol.73 No.1
Magnetization plateaux in dimerized spin ladder arrays
We investigate the ground state magnetization plateaux appearing in spin 1/2
two-leg ladders built up from dimerized antiferromagnetic Heisenberg chains and
dimerized zig-zag interchain couplings. Using both Abelian bosonization and
Lanczos methods we find that the system yields rather unusual plateaux and
exhibits massive and massless phases for specific choices or ``tuning'' of
exchange interactions. The relevance of this behavior in the study of
NH_4CuCl_3 is discussed.Comment: 9 pages, RevTeX, 11 postscript figure
Excitation Spectra of Structurally Dimerized and Spin-Peierls Chains in a Magnetic Field
The dynamical spin structure factor and the Raman response are calculated for
structurally dimerized and spin-Peierls chains in a magnetic field, using exact
diagonalization techniques. In both cases there is a spin liquid phase composed
of interacting singlet dimers at small fields h < h_c1, an incommensurate
regime (h_c1 < h < h_c2) in which the modulation of the triplet excitation
spectra adapts to the applied field, and a fully spin polarized phase above an
upper critical field h_c2. For structurally dimerized chains, the spin gap
closes in the incommensurate phase, whereas spin-Peierls chains remain gapped.
In the spin liquid regimes, the dominant feature of the triplet spectra is a
one-magnon bound state, separated from a continuum of states at higher
energies. There are also indications of a singlet bound state above the
one-magnon triplet.Comment: RevTex, 10 pages with 8 eps figure
Ab initio investigation of VOSeO3, a spin gap system with coupled spin dimers
Motivated by an early experimental study of VOSeO3, which suggested that it
is a quasi-2D system of weakly coupled spin dimers with a small spin gap, we
have investigated the electronic structure of this material via
density-functional calculations. These ab initio results indicate that the
system is better thought of as an alternating spin-1/2 chain with moderate
interchain interactions, an analog of (VO)2P2O7. The potential interest of this
system for studies in high magnetic field given the presumably small value of
the spin gap is emphasized.Comment: 4 pages, 5 figure
Three-Dimensional Ordering in Weakly Coupled Antiferromagnetic Ladders and Chains
A theoretical description is presented for low-temperature magnetic-field
induced three-dimensional (3D) ordering transitions in strongly anisotropic
quantum antiferromagnets, consisting of weakly coupled antiferromagnetic
spin-1/2 chains and ladders. First, effective continuum field theories are
derived for the one-dimensional subsystems. Then the Luttinger parameters,
which determine the low-temperature susceptibilities of the chains and ladders,
are calculated from the Bethe ansatz solution for these effective models. The
3D ordering transition line is obtained using a random phase approximation for
the weak inter-chain (inter-ladder) coupling. Finally, considering a Ginzburg
criterion, the fluctuation corrections to this approach are shown to be small.
The nature of the 3D ordered phase resembles a Bose condensate of integer-spin
magnons. It is proposed that for systems with higher spin degrees of freedom,
e.g. N-leg spin-1/2 ladders, multi-component condensates can occur at high
magnetic fields.Comment: RevTex, 18 pages with 7 figure
- …
