117 research outputs found
Recommended from our members
Application of Soft X-Ray Lasers for Probing High Density Plasmas
The reliability and characteristics of collisionally pumped soft x-ray lasers make them ideal for a wide variety of plasma diagnostics. These systems now operate over a wavelength range extending from 35 to 400 {Angstrom} and have output energies as high as 10 mJ in 150 ps pulses. The beam divergence of these lasers is less than 15 mrad and they have a typical linewidth of {Delta}{lambda}/{lambda} {approximately} 10{sup -4} making them the brightest xuv sources available. In this paper we will describe the use of x-ray lasers to probe high density plasmas using a variety of diagnostic techniques. Using an x-ray laser and a multilayer mirror imaging system we have studied hydrodynamic imprinting of laser speckle pattern on directly driven thin foils with 1-2 {mu}m spatial resolution. Taking advantage of recently developed multilayer beamsplitters we have constructed and used a Mach-Zehnder interferometer operating at 155 {Angstrom} to probe 1-3 mm size laser produced plasmas with peak electron densities of 4 x 10{sup 21} cm{sup -3}. A comparison of our results with computer simulations will be presented
Recommended from our members
Equation of state measurements at extreme pressures using laser-driven shocks
The regime of high density and extreme pressure in hydrogen is very difficult to approach theoretically since it is a strongly correlated, partially degenerate composite of molecules, atoms, and electrons. For this reason, a number of theoretical models of the EOS of hydrogen have been proposed. This makes reliable experimental data essential as a guide to theory. We have accessed this regime by shocking liquid D2 to pressures at and above the metallic transition where we measured the thermodynamic properties of the shocked state
Equation of State of Water in the Megabar Range
We present some preliminary results on the equation of
state (EOS) of water in a pressure regime of astrophysical
interest. In the experiments, structured targets made of
an aluminum step followed by a water layer are irradiated
by the laser at an intensity up to 4·1014
W·cm−2 to generate a shock wave.
Velocities are measured in the two materials using a VISAR
interferometric diagnostic for water, and a streak camera
to measure target self-emission for Al. EOS points for water
are obtained with the impedance mismatch method using Al EOS
as a reference. Water reflectivity was also measured
Recommended from our members
Micron-Scale Resolution Radiography of Laser-Accelerated and Laser-Exploded Foils Using an Yttrium X-Ray Laser
The authors have imaged laser-accelerated foils and exploding foils on the few-micron scale using an yttrium x-ray laser (155 {angstrom}, 80 eV, {approximately}200 ps duration) and a multilayer mirror imaging system. At the maximum magnification of 30, resolution was of order one micron. The images were side-on radiographs of the foils. Accelerated foils showed significant filamentation on the rear-side (away from the driving laser) of the foil, although the laser beam was smoothed. In addition to the narrow rear-side filamentation, some shots revealed larger-scale plume-like structures on the front (driven) side of the Al foil. These plumes seem to be little-affected by beam smoothing and are likely a consequence of Rayleigh-Taylor instability. The experiments were carried out at the Nova two-beam facility
Recommended from our members
Plasma-Based Studies on 4th Generation Light Sources
The construction of a short pulse tunable x-ray laser source will be a watershed for plasma-based and warm dense matter research. The areas we will discuss below can be separated broadly into warn dense matter (WDM) research, laser probing of near solid density plasmas, and laser-plasma spectroscopy of ions in plasmas. The area of WDM refers to that part of the density-temperature phase space where the standard theories of condensed matter physics and/or plasma statistical physics are invalid. Warm dense matter, therefore, defines a region between solids and plasmas, a regime that is found in planetary interiors, cool dense stars, and in every plasma device where one starts from a solid, e.g., laser-solid matter produced plasma as well as all inertial fusion schemes. The study of dense plasmas has been severely hampered by the fact that laser-based methods have been unavailable. The single most useful diagnostic of local plasma conditions, e.g., the temperature (T{sub e}), the density (n{sub e}), and the ionization (Z), has been Thomson scattering. However, due to the fact that visible light will not propagate at electron densities, n{sub e}, {ge} 10{sup 22} cm{sup -3} implies dense plasmas can not be probed. The 4th generation sources, LCLS and Tesla will remove these restrictions. Laser-based plasma spectroscopic techniques have been used with great success to determine the line shapes of atomic transitions in plasmas, study the population kinetics of atomic systems embedded in plasmas, and look at redistribution of radiation. However. the possibilities end for plasmas with n{sub e} {ge} 10{sup 22} since light propagation through the medium is severely altered by the plasma. The entire field of high Z plasma kinetics from laser produced plasma will then be available to study with the tunable source
Recommended from our members
Electron Density Measurement of a Colliding Plasma Using Soft X-Ray Laser Interferometry
The understanding of the collision and subsequent interaction of counter-streaming high-density plasmas is important for the design of indirectly-driven inertial confinement fusion (ICF) hohlraums. We have employed a soft x-ray Mach-Zehnder interferometer, using a Ne- like Y x-ray laser at 155 {angstrom} as the probe source, to study interpenetration and stagnation of two colliding plasmas. We observed a peaked density profile at the symmetry axis with a wide stagnation region with width of order 100 {mu}m. We compare the measured density profile with density profiles calculated by the radiation hydrodynamic code LASNEX and a multi-specie fluid code which allows for interpenetration. The measured density profile falls in between the calculated profiles using collisionless and fluid approximations. By using different target materials and irradiation configurations, we can vary the collisionality of the plasma. We hope to use the soft x-ray laser interferometry as a mechanism to validate and benchmark our numerical codes used for the design and analysis of high-energy- density physics experiments
Recommended from our members
Performance and analysis of absorption experiments on x-ray heated low-Z constrained samples
Results of experiments on the absorption of niobium in a hot, dense plasma are presented. These results represent a major step in the development of absorption techniques necessary for the quantitative characterization of hot, dense matter. A general discussion is presented of the requirements for performing quantitative analysis of absorption spectra. Hydrodynamic simulations are used to illustrate the behavior of tamped X-ray-heated matter and to indicate effects that can arise from the two dimensional aspects of the experiment. The absorption spectrum of a low-Z material, in this case aluminum, provides a temperature diagnostic and indicates the advance of the absorption measurement technique to the level of application. The experimental technique is placed in context with a review of other measurements using absorption spectroscopy to probe hot, dense matter
- …