2 research outputs found

    PROGNOSTIC VALUE OF MOTOR EVOKED POTENTIALS IN MOTOR FUNCTION RECOVERY OF UPPER LIMB AFTER STROKE

    Get PDF
    Objective: To determine the prognostic value of clinical assessment and motor evoked potentials for upper limb strength and functional recovery after acute stroke, and to establish the possible use of motor evoked potentials in rehabilitation. Design: A prospective study. Subjects: Fifty-two patients with hemiparesis were enrolled one month post-stroke; 38 patients concluded the study at 12 months. Methods: Motor evoked potentials were recorded at baseline and after one month. Upper limb muscular strength (Medical Research Council Scale, MRC) and functional tests (Frenchay Arm Test, Barthel Index) were used as dependent outcome variables 12 months later. Motor evoked potentials were classified as present or absent. Predictive values of motor evoked potentials and MRC were evaluated. Results: At 12 months, patients with baseline recordable motor evoked potentials showed a good functional recovery (positive predictive value 94%). The absence of motor evoked potentials did not exclude muscular strength recovery (negative predictive value 95%). Motor evoked potentials had a higher positive predictive value than MRC only in patients with MRC < 2. Conclusion: Motor evoked potentials could be a supportive tool to increase the prognostic accuracy of upper limb motor and functional outcome in hemiparetic patients, especially those with severe initial paresis (MRC < 2) and/or with motor evoked potentials absent in the post-stroke acute phase

    Upper Limb Robotic Rehabilitation After Stroke: A Multicenter, Randomized Clinical Trial

    Full text link
    Background and purpose: After stroke, only 12% of survivors obtain complete upper limb (UL) functional recovery, while in 30% to 60% UL deficits persist. Despite the complexity of the UL, prior robot-mediated therapy research has used only one robot in comparisons to conventional therapy. We evaluated the efficacy of robotic UL treatment using a set of 4 devices, compared with conventional therapy. Methods: In a multicenter, randomized controlled trial, 247 subjects with subacute stroke were assigned either to robotic (using a set of 4 devices) or to conventional treatment, each consisting of 30 sessions. Subjects were evaluated before and after treatment, with follow-up assessment after 3 months. The primary outcome measure was change from baseline in the Fugl-Meyer Assessment (FMA) score. Secondary outcome measures were selected to assess motor function, activities, and participation. Results: One hundred ninety subjects completed the posttreatment assessment, with a subset (n = 122) returning for follow-up evaluation. Mean FMA score improvement in the robotic group was 8.50 (confidence interval: 6.82 to 10.17), versus 8.57 (confidence interval: 6.97 to 10.18) in the conventional group, with no significant between-groups difference (adjusted mean difference -0.08, P = 0.948). Both groups also had similar change in secondary measures, except for the Motricity Index, with better results for the robotic group (adjusted mean difference 4.42, P = 0.037). At follow-up, subjects continued to improve with no between-groups differences. Discussion and conclusions: Robotic treatment using a set of 4 devices significantly improved UL motor function, activities, and participation in subjects with subacute stroke to the same extent as a similar amount of conventional therapy. Video Abstract is available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A291)
    corecore