53 research outputs found
Analog MIMO Radio-over-Copper: Prototype and Preliminary Experimental Results
Analog Multiple-Input Multiple-Output Radio-over-Copper (A-MIMO-RoC) is an
effective all-analog FrontHaul (FH) architecture that exploits any pre-existing
Local Area Network (LAN) cabling infrastructure of buildings to distribute
Radio-Frequency (RF) signals indoors. A-MIMO-RoC, by leveraging a fully analog
implementation, completely avoids any dedicated digital interface by using a
transparent end-to-end system, with consequent latency, bandwidth and cost
benefits. Usually, LAN cables are exploited mainly in the low-frequency
spectrum portion, mostly due to the moderate cable attenuation and crosstalk
among twisted-pairs. Unlike current systems based on LAN cables, the key
feature of the proposed platform is to exploit more efficiently the huge
bandwidth capability offered by LAN cables, that contain 4 twisted-pairs
reaching up to 500 MHz bandwidth/pair when the length is below 100 m. Several
works proposed numerical simulations that assert the feasibility of employing
LAN cables for indoor FH applications up to several hundreds of MHz, but an
A-MIMO-RoC experimental evaluation is still missing. Here, we present some
preliminary results obtained with an A-MIMO-RoC prototype made by low-cost
all-analog/all-passive devices along the signal path. This setup demonstrates
experimentally the feasibility of the proposed analog relaying of MIMO RF
signals over LAN cables up to 400 MHz, thus enabling an efficient exploitation
of the LAN cables transport capabilities for 5G indoor applications.Comment: Part of this work has been accepted as a conference publication to
ISWCS 201
Real-World Analysis of a Network Deployment in Office Scenario with a Software Defined Radio Testbed
- …