2,353 research outputs found
First results from simulations of supersymmetric lattices
We conduct the first numerical simulations of lattice theories with exact
supersymmetry arising from the orbifold constructions of
\cite{Cohen:2003xe,Cohen:2003qw,Kaplan:2005ta}. We consider the \cQ=4 theory
in dimensions and the \cQ=16 theory in dimensions. We show
that the U(N) theories do not possess vacua which are stable
non-perturbatively, but that this problem can be circumvented after truncation
to SU(N). We measure the distribution of scalar field eigenvalues, the spectrum
of the fermion operator and the phase of the Pfaffian arising after integration
over the fermions. We monitor supersymmetry breaking effects by measuring a
simple Ward identity. Our results indicate that simulations of
super Yang-Mills may be achievable in the near future.Comment: 25 pages, 14 figures, 9 tables. 3 references adde
Exact Ward-Takahashi identity for the lattice N=1 Wess-Zumino model
The lattice Wess-Zumino model written in terms of the Ginsparg-Wilson
relation is invariant under a generalized supersymmetry transformation which is
determined by an iterative procedure in the coupling constant. By studying the
associated Ward-Takahashi identity up to order we show that this lattice
supersymmetry automatically leads to restoration of continuum supersymmetry
without fine tuning. In particular, the scalar and fermion renormalization wave
functions coincide.Comment: 6 pages, 5 figures, Talk given at QG05, Cala Gonone, Sardinia, Italy.
12-16 September 200
Topological gravity on the lattice
In this paper we show that a particular twist of super
Yang-Mills in three dimensions with gauge group SU(2) possesses a set of
classical vacua corresponding to the space of flat connections of the {\it
complexified} gauge group . The theory also contains a set of
topological observables corresponding to Wilson loops wrapping non-trivial
cycles of the base manifold. This moduli space and set of topological
observables is shared with the Chern Simons formulation of three dimensional
gravity and we hence conjecture that the Yang-Mills theory gives an equivalent
description of the gravitational theory. Unlike the Chern Simons formulation
the twisted Yang-Mills theory possesses a supersymmetric and gauge invariant
lattice construction which then provides a possible non-perturbative definition
of three dimensional gravity.Comment: 10 page
Lattice formulation of (2,2) supersymmetric gauge theories with matter fields
We construct lattice actions for a variety of (2,2) supersymmetric gauge
theories in two dimensions with matter fields interacting via a superpotential.Comment: 13 pages, 2 figures. Appendix added, references updated, typos fixe
Simulating Four-Dimensional Simplicial Gravity using Degenerate Triangulations
We extend a model of four-dimensional simplicial quantum gravity to include
degenerate triangulations in addition to combinatorial triangulations
traditionally used. Relaxing the constraint that every 4-simplex is uniquely
defined by a set of five distinct vertexes, we allow triangulations containing
multiply connected simplexes and distinct simplexes defined by the same set of
vertexes. We demonstrate numerically that including degenerated triangulations
substantially reduces the finite-size effects in the model. In particular, we
provide a strong numerical evidence for an exponential bound on the entropic
growth of the ensemble of degenerate triangulations, and show that a
discontinuous crumpling transition is already observed on triangulations of
volume N_4 ~= 4000.Comment: Latex, 8 pages, 4 eps-figure
Deconstruction and other approaches to supersymmetric lattice field theories
This report contains both a review of recent approaches to supersymmetric
lattice field theories and some new results on the deconstruction approach. The
essential reason for the complex phase problem of the fermion determinant is
shown to be derivative interactions that are not present in the continuum.
These irrelevant operators violate the self-conjugacy of the fermion action
that is present in the continuum. It is explained why this complex phase
problem does not disappear in the continuum limit. The fermion determinant
suppression of various branches of the classical moduli space is explored, and
found to be supportive of previous claims regarding the continuum limit.Comment: 70 page
Wess-Zumino model with exact supersymmetry on the lattice
A lattice formulation of the four dimensional Wess-Zumino model that uses
Ginsparg-Wilson fermions and keeps exact supersymmetry is presented. The
supersymmetry transformation that leaves invariant the action at finite lattice
spacing is determined by performing an iterative procedure in the coupling
constant. The closure of the algebra, generated by this transformation is also
showed.Comment: 13 pages. Few references added. New appendix on Ward identity added.
Version to be published in JHE
Twisted Supersymmetric Gauge Theories and Orbifold Lattices
We examine the relation between twisted versions of the extended
supersymmetric gauge theories and supersymmetric orbifold lattices. In
particular, for the SYM in , we show that the continuum
limit of orbifold lattice reproduces the twist introduced by Marcus, and the
examples at lower dimensions are usually Blau-Thompson type. The orbifold
lattice point group symmetry is a subgroup of the twisted Lorentz group, and
the exact supersymmetry of the lattice is indeed the nilpotent scalar
supersymmetry of the twisted versions. We also introduce twisting in terms of
spin groups of finite point subgroups of -symmetry and spacetime symmetry.Comment: 32 page
Towards lattice simulation of the gauge theory duals to black holes and hot strings
A generalization of the AdS/CFT conjecture postulates a duality between IIA
string theory and 16 supercharge Yang-Mills quantum mechanics in the large N 't
Hooft limit. At low temperatures string theory describes black holes, whose
thermodynamics may hence be studied using the dual quantum mechanics. This
quantum mechanics is strongly coupled which motivates the use of lattice
techniques. We argue that, contrary to expectation, the theory when discretized
naively will nevertheless recover continuum supersymmetry as the lattice
spacing is sent to zero. We test these ideas by studying the 4 supercharge
version of this Yang-Mills quantum mechanics in the 't Hooft limit. We use both
a naive lattice action and a manifestly supersymmetric action. Using Monte
Carlo methods we simulate the Euclidean theories, and study the lattice
continuum limit, for both thermal and non-thermal periodic boundary conditions,
confirming continuum supersymmetry is recovered for the naive action when
appropriate. We obtain results for the thermal system with N up to 12. These
favor the existence of a single deconfined phase for all non-zero temperatures.
These results are an encouraging indication that the 16 supercharge theory is
within reach using similar methods and resources.Comment: 49 pages, 14 figure
Relations among Supersymmetric Lattice Gauge Theories via Orbifolding
We show how to derive Catterall's supersymmetric lattice gauge theories
directly from the general principle of orbifolding followed by a variant of the
usual deconstruction. These theories are forced to be complexified due to a
clash between charge assignments under U(1)-symmetries and lattice assignments
in terms of scalar, vector and tensor components for the fermions. Other
prescriptions for how to discretize the theory follow automatically by
orbifolding and deconstruction. We find that Catterall's complexified model for
the two-dimensional N=(2,2) theory has two independent preserved
supersymmetries. We comment on consistent truncations to lattice theories
without this complexification and with the correct continuum limit. The
construction of lattice theories this way is general, and can be used to derive
new supersymmetric lattice theories through the orbifolding procedure. As an
example, we apply the prescription to topologically twisted four-dimensional
N=2 supersymmetric Yang-Mills theory. We show that a consistent truncation is
closely related to the lattice formulation previously given by Sugino.Comment: 20 pages, LaTeX2e, no figur
- …