2,353 research outputs found

    First results from simulations of supersymmetric lattices

    Get PDF
    We conduct the first numerical simulations of lattice theories with exact supersymmetry arising from the orbifold constructions of \cite{Cohen:2003xe,Cohen:2003qw,Kaplan:2005ta}. We consider the \cQ=4 theory in D=0,2D=0,2 dimensions and the \cQ=16 theory in D=0,2,4D=0,2,4 dimensions. We show that the U(N) theories do not possess vacua which are stable non-perturbatively, but that this problem can be circumvented after truncation to SU(N). We measure the distribution of scalar field eigenvalues, the spectrum of the fermion operator and the phase of the Pfaffian arising after integration over the fermions. We monitor supersymmetry breaking effects by measuring a simple Ward identity. Our results indicate that simulations of N=4{\cal N}=4 super Yang-Mills may be achievable in the near future.Comment: 25 pages, 14 figures, 9 tables. 3 references adde

    Exact Ward-Takahashi identity for the lattice N=1 Wess-Zumino model

    Full text link
    The lattice Wess-Zumino model written in terms of the Ginsparg-Wilson relation is invariant under a generalized supersymmetry transformation which is determined by an iterative procedure in the coupling constant. By studying the associated Ward-Takahashi identity up to order g2g^2 we show that this lattice supersymmetry automatically leads to restoration of continuum supersymmetry without fine tuning. In particular, the scalar and fermion renormalization wave functions coincide.Comment: 6 pages, 5 figures, Talk given at QG05, Cala Gonone, Sardinia, Italy. 12-16 September 200

    Topological gravity on the lattice

    Get PDF
    In this paper we show that a particular twist of N=4\mathcal{N}=4 super Yang-Mills in three dimensions with gauge group SU(2) possesses a set of classical vacua corresponding to the space of flat connections of the {\it complexified} gauge group SL(2,C)SL(2,C). The theory also contains a set of topological observables corresponding to Wilson loops wrapping non-trivial cycles of the base manifold. This moduli space and set of topological observables is shared with the Chern Simons formulation of three dimensional gravity and we hence conjecture that the Yang-Mills theory gives an equivalent description of the gravitational theory. Unlike the Chern Simons formulation the twisted Yang-Mills theory possesses a supersymmetric and gauge invariant lattice construction which then provides a possible non-perturbative definition of three dimensional gravity.Comment: 10 page

    Lattice formulation of (2,2) supersymmetric gauge theories with matter fields

    Full text link
    We construct lattice actions for a variety of (2,2) supersymmetric gauge theories in two dimensions with matter fields interacting via a superpotential.Comment: 13 pages, 2 figures. Appendix added, references updated, typos fixe

    Simulating Four-Dimensional Simplicial Gravity using Degenerate Triangulations

    Get PDF
    We extend a model of four-dimensional simplicial quantum gravity to include degenerate triangulations in addition to combinatorial triangulations traditionally used. Relaxing the constraint that every 4-simplex is uniquely defined by a set of five distinct vertexes, we allow triangulations containing multiply connected simplexes and distinct simplexes defined by the same set of vertexes. We demonstrate numerically that including degenerated triangulations substantially reduces the finite-size effects in the model. In particular, we provide a strong numerical evidence for an exponential bound on the entropic growth of the ensemble of degenerate triangulations, and show that a discontinuous crumpling transition is already observed on triangulations of volume N_4 ~= 4000.Comment: Latex, 8 pages, 4 eps-figure

    Deconstruction and other approaches to supersymmetric lattice field theories

    Full text link
    This report contains both a review of recent approaches to supersymmetric lattice field theories and some new results on the deconstruction approach. The essential reason for the complex phase problem of the fermion determinant is shown to be derivative interactions that are not present in the continuum. These irrelevant operators violate the self-conjugacy of the fermion action that is present in the continuum. It is explained why this complex phase problem does not disappear in the continuum limit. The fermion determinant suppression of various branches of the classical moduli space is explored, and found to be supportive of previous claims regarding the continuum limit.Comment: 70 page

    Wess-Zumino model with exact supersymmetry on the lattice

    Full text link
    A lattice formulation of the four dimensional Wess-Zumino model that uses Ginsparg-Wilson fermions and keeps exact supersymmetry is presented. The supersymmetry transformation that leaves invariant the action at finite lattice spacing is determined by performing an iterative procedure in the coupling constant. The closure of the algebra, generated by this transformation is also showed.Comment: 13 pages. Few references added. New appendix on Ward identity added. Version to be published in JHE

    Twisted Supersymmetric Gauge Theories and Orbifold Lattices

    Full text link
    We examine the relation between twisted versions of the extended supersymmetric gauge theories and supersymmetric orbifold lattices. In particular, for the N=4\mathcal{N}=4 SYM in d=4d=4, we show that the continuum limit of orbifold lattice reproduces the twist introduced by Marcus, and the examples at lower dimensions are usually Blau-Thompson type. The orbifold lattice point group symmetry is a subgroup of the twisted Lorentz group, and the exact supersymmetry of the lattice is indeed the nilpotent scalar supersymmetry of the twisted versions. We also introduce twisting in terms of spin groups of finite point subgroups of RR-symmetry and spacetime symmetry.Comment: 32 page

    Towards lattice simulation of the gauge theory duals to black holes and hot strings

    Get PDF
    A generalization of the AdS/CFT conjecture postulates a duality between IIA string theory and 16 supercharge Yang-Mills quantum mechanics in the large N 't Hooft limit. At low temperatures string theory describes black holes, whose thermodynamics may hence be studied using the dual quantum mechanics. This quantum mechanics is strongly coupled which motivates the use of lattice techniques. We argue that, contrary to expectation, the theory when discretized naively will nevertheless recover continuum supersymmetry as the lattice spacing is sent to zero. We test these ideas by studying the 4 supercharge version of this Yang-Mills quantum mechanics in the 't Hooft limit. We use both a naive lattice action and a manifestly supersymmetric action. Using Monte Carlo methods we simulate the Euclidean theories, and study the lattice continuum limit, for both thermal and non-thermal periodic boundary conditions, confirming continuum supersymmetry is recovered for the naive action when appropriate. We obtain results for the thermal system with N up to 12. These favor the existence of a single deconfined phase for all non-zero temperatures. These results are an encouraging indication that the 16 supercharge theory is within reach using similar methods and resources.Comment: 49 pages, 14 figure

    Relations among Supersymmetric Lattice Gauge Theories via Orbifolding

    Full text link
    We show how to derive Catterall's supersymmetric lattice gauge theories directly from the general principle of orbifolding followed by a variant of the usual deconstruction. These theories are forced to be complexified due to a clash between charge assignments under U(1)-symmetries and lattice assignments in terms of scalar, vector and tensor components for the fermions. Other prescriptions for how to discretize the theory follow automatically by orbifolding and deconstruction. We find that Catterall's complexified model for the two-dimensional N=(2,2) theory has two independent preserved supersymmetries. We comment on consistent truncations to lattice theories without this complexification and with the correct continuum limit. The construction of lattice theories this way is general, and can be used to derive new supersymmetric lattice theories through the orbifolding procedure. As an example, we apply the prescription to topologically twisted four-dimensional N=2 supersymmetric Yang-Mills theory. We show that a consistent truncation is closely related to the lattice formulation previously given by Sugino.Comment: 20 pages, LaTeX2e, no figur
    corecore