3,079 research outputs found

    Towards a better understanding of the low income consumer

    Get PDF
    Research on low-income or poorer consumers and the disadvantages that they encounter in the marketplace is the focus of this paper. A number of commonly held beliefs about low-income consumers need to be challenged but since these consumers are not high priority as target markets there is little investment in the market research that might go some way to dispel them. This paper aims to challenge some of these beliefs and to suggest how this research might be further developed by drawing together research and theories from a range of disciplines including consumer research, psychology and sociological constructs

    Cooperation and conflict in family decision making

    Get PDF
    This study addresses the family dynamics of the decision making process, in particular the issues of cooperation and conflict, in both two parent and lone parent families. Thirty individual and family-group interviews were held (five two-parent families and twenty-five lone parent families). The families all had low incomes, heightening the importance placed on the consumer decision making process. Findings are considered in relation to the interaction between couples as well as parent-child interaction. Overall, cooperation was a more prominent theme than conflict amongst the families and collectivist values tended to dominate

    First results from simulations of supersymmetric lattices

    Get PDF
    We conduct the first numerical simulations of lattice theories with exact supersymmetry arising from the orbifold constructions of \cite{Cohen:2003xe,Cohen:2003qw,Kaplan:2005ta}. We consider the \cQ=4 theory in D=0,2D=0,2 dimensions and the \cQ=16 theory in D=0,2,4D=0,2,4 dimensions. We show that the U(N) theories do not possess vacua which are stable non-perturbatively, but that this problem can be circumvented after truncation to SU(N). We measure the distribution of scalar field eigenvalues, the spectrum of the fermion operator and the phase of the Pfaffian arising after integration over the fermions. We monitor supersymmetry breaking effects by measuring a simple Ward identity. Our results indicate that simulations of N=4{\cal N}=4 super Yang-Mills may be achievable in the near future.Comment: 25 pages, 14 figures, 9 tables. 3 references adde

    Numerical Study of c>1 Matter Coupled to Quantum Gravity

    Full text link
    We present the results of a numerical simulation aimed at understanding the nature of the `c = 1 barrier' in two dimensional quantum gravity. We study multiple Ising models living on dynamical Ď•3\phi^3 graphs and analyse the behaviour of moments of the graph loop distribution. We notice a universality at work as the average properties of typical graphs from the ensemble are determined only by the central charge. We further argue that the qualitative nature of these results can be understood from considering the effect of fluctuations about a mean field solution in the Ising sector.Comment: 12 page

    Topological gravity on the lattice

    Get PDF
    In this paper we show that a particular twist of N=4\mathcal{N}=4 super Yang-Mills in three dimensions with gauge group SU(2) possesses a set of classical vacua corresponding to the space of flat connections of the {\it complexified} gauge group SL(2,C)SL(2,C). The theory also contains a set of topological observables corresponding to Wilson loops wrapping non-trivial cycles of the base manifold. This moduli space and set of topological observables is shared with the Chern Simons formulation of three dimensional gravity and we hence conjecture that the Yang-Mills theory gives an equivalent description of the gravitational theory. Unlike the Chern Simons formulation the twisted Yang-Mills theory possesses a supersymmetric and gauge invariant lattice construction which then provides a possible non-perturbative definition of three dimensional gravity.Comment: 10 page

    Exact Ward-Takahashi identity for the lattice N=1 Wess-Zumino model

    Full text link
    The lattice Wess-Zumino model written in terms of the Ginsparg-Wilson relation is invariant under a generalized supersymmetry transformation which is determined by an iterative procedure in the coupling constant. By studying the associated Ward-Takahashi identity up to order g2g^2 we show that this lattice supersymmetry automatically leads to restoration of continuum supersymmetry without fine tuning. In particular, the scalar and fermion renormalization wave functions coincide.Comment: 6 pages, 5 figures, Talk given at QG05, Cala Gonone, Sardinia, Italy. 12-16 September 200

    Lattice formulation of (2,2) supersymmetric gauge theories with matter fields

    Full text link
    We construct lattice actions for a variety of (2,2) supersymmetric gauge theories in two dimensions with matter fields interacting via a superpotential.Comment: 13 pages, 2 figures. Appendix added, references updated, typos fixe

    Deconstruction and other approaches to supersymmetric lattice field theories

    Full text link
    This report contains both a review of recent approaches to supersymmetric lattice field theories and some new results on the deconstruction approach. The essential reason for the complex phase problem of the fermion determinant is shown to be derivative interactions that are not present in the continuum. These irrelevant operators violate the self-conjugacy of the fermion action that is present in the continuum. It is explained why this complex phase problem does not disappear in the continuum limit. The fermion determinant suppression of various branches of the classical moduli space is explored, and found to be supportive of previous claims regarding the continuum limit.Comment: 70 page

    Twisted Supersymmetric Gauge Theories and Orbifold Lattices

    Full text link
    We examine the relation between twisted versions of the extended supersymmetric gauge theories and supersymmetric orbifold lattices. In particular, for the N=4\mathcal{N}=4 SYM in d=4d=4, we show that the continuum limit of orbifold lattice reproduces the twist introduced by Marcus, and the examples at lower dimensions are usually Blau-Thompson type. The orbifold lattice point group symmetry is a subgroup of the twisted Lorentz group, and the exact supersymmetry of the lattice is indeed the nilpotent scalar supersymmetry of the twisted versions. We also introduce twisting in terms of spin groups of finite point subgroups of RR-symmetry and spacetime symmetry.Comment: 32 page

    Simulating Four-Dimensional Simplicial Gravity using Degenerate Triangulations

    Get PDF
    We extend a model of four-dimensional simplicial quantum gravity to include degenerate triangulations in addition to combinatorial triangulations traditionally used. Relaxing the constraint that every 4-simplex is uniquely defined by a set of five distinct vertexes, we allow triangulations containing multiply connected simplexes and distinct simplexes defined by the same set of vertexes. We demonstrate numerically that including degenerated triangulations substantially reduces the finite-size effects in the model. In particular, we provide a strong numerical evidence for an exponential bound on the entropic growth of the ensemble of degenerate triangulations, and show that a discontinuous crumpling transition is already observed on triangulations of volume N_4 ~= 4000.Comment: Latex, 8 pages, 4 eps-figure
    • …
    corecore