260 research outputs found

    The neuropathology of kuru and variant Creutzfeldt–Jakob disease

    Get PDF
    A comparison of the pathological profiles of two spongiform encephalopathies with a similar presumptive route of infection was performed. Archival kuru and recent variant Creutzfeldt–Jakob disease (vCJD) cases reveal distinct lesional differences, particularly with respect to prion protein, suggesting that the strain of agent is important in determining the phenotype. Genotype analysis of the polymorphism on codon 129 reveals (in conjunction with updated information from more kuru cases) that all three genotypes (VV, MV and MM (where M is methionine and V is valine)) are detected in kuru with some preference for MM homozygosity. The presence of valine does not therefore appear to determine peripheral selection of PrPCJD. vCJD remains restricted to date to MM homozygosity on codon 129. It remains to be determined whether this genotype is dictating a shorter incubation period

    Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals

    Get PDF
    We detected HIV-1 DNA in pure populations of perivascular macrophages, parenchymal microglia, and astrocytes, isolated using laser microdissection from brain tissue of five untreated individuals who died in the presymptomatic stage of infection from non-HIV causes. HIV-1 DNA was detected in the three cell populations, most consistently in perivascular macrophages, without evidence of productive infection. The percentage of PCR reactions detecting HIV-1 DNA in perivascular macrophages correlated inversely with peripheral blood CD4 counts. These findings demonstrate that brain cell reservoirs of latent HIV-1 exist before pathological HIV encephalitis and suggest that perivascular macrophage trafficking of latent virus into the brain increases with immunosuppression

    Rubidium and potassium levels are altered in Alzheimer's disease brain and blood but not in cerebrospinal fluid

    Get PDF
    Loss of intracellular compartmentalization of potassium is a biochemical feature of Alzheimer's disease indicating a loss of membrane integrity and mitochondrial dysfunction. We examined potassium and rubidium (a biological proxy for potassium) in brain tissue, blood fractions and cerebrospinal fluid from Alzheimer's disease and healthy control subjects to investigate the diagnostic potential of these two metal ions. We found that both potassium and rubidium levels were significantly decreased across all intracellular compartments in the Alzheimer's disease brain. Serum from over 1000 participants in the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Ageing (AIBL), showed minor changes according to disease state. Potassium and rubidium levels in erythrocytes and cerebrospinal fluid were not significantly different according to disease state, and rubidium was slightly decreased in Alzheimer's disease patients compared to healthy controls. Our data provides evidence that contrasts the hypothesized disruption of the blood-brain barrier in Alzheimer's disease, with the systemic decrease in cortical potassium and rubidium levels suggesting influx of ions from the blood is minimal and that the observed changes are more likely indicative of an internal energy crisis within the brain. These findings may be the basis for potential diagnostic imaging studies using radioactive potassium and rubidium tracers

    The tissue-type plasminogen activator-plasminogen activator inhibitor 1 complex promotes neurovascular injury in brain trauma: evidence from mice and humans

    Get PDF
    The neurovascular unit provides a dynamic interface between the circulation and central nervous system. Disruption of neurovascular integrity occurs in numerous brain pathologies including neurotrauma and ischaemic stroke. Tissue plasminogen activator is a serine protease that converts plasminogen to plasmin, a protease that dissolves blood clots. Besides its role in fibrinolysis, tissue plasminogen activator is abundantly expressed in the brain where it mediates extracellular proteolysis. However, proteolytically active tissue plasminogen activator also promotes neurovascular disruption after ischaemic stroke; the molecular mechanisms of this process are still unclear. Tissue plasminogen activator is naturally inhibited by serine protease inhibitors (serpins): plasminogen activator inhibitor-1, neuroserpin or protease nexin-1 that results in the formation of serpin:protease complexes. Proteases and serpin:protease complexes are cleared through high-affinity binding to low-density lipoprotein receptors, but their binding to these receptors can also transmit extracellular signals across the plasma membrane. The matrix metalloproteinases are the second major proteolytic system in the mammalian brain, and like tissue plasminogen activators are pivotal to neurological function but can also degrade structures of the neurovascular unit after injury. Herein, we show that tissue plasminogen activator potentiates neurovascular damage in a dose-dependent manner in a mouse model of neurotrauma. Surprisingly, inhibition of activity following administration of plasminogen activator inhibitor-1 significantly increased cerebrovascular permeability. This led to our finding that formation of complexes between tissue plasminogen activator and plasminogen activator inhibitor-1 in the brain parenchyma facilitates post-traumatic cerebrovascular damage. We demonstrate that following trauma, the complex binds to low-density lipoprotein receptors, triggering the induction of matrix metalloproteinase-3. Accordingly, pharmacological inhibition of matrix metalloproteinase-3 attenuates neurovascular permeability and improves neurological function in injured mice. Our results are clinically relevant, because concentrations of tissue plasminogen activator: plasminogen activator inhibitor-1 complex and matrix metalloproteinase-3 are significantly elevated in cerebrospinal fluid of trauma patients and correlate with neurological outcome. In a separate study, we found that matrix metalloproteinase-3 and albumin, a marker of cerebrovascular damage, were significantly increased in brain tissue of patients with neurotrauma. Perturbation of neurovascular homeostasis causing oedema, inflammation and cell death is an important cause of acute and long-term neurological dysfunction after trauma. A role for the tissue plasminogen activator-matrix metalloproteinase axis in promoting neurovascular disruption after neurotrauma has not been described thus far. Targeting tissue plasminogen activator: plasminogen activator inhibitor-1 complex signalling or downstream matrix metalloproteinase-3 induction may provide viable therapeutic strategies to reduce cerebrovascular permeability after neurotraum

    Aqueous Dissolution of Alzheimer's Disease Ab Amyloid Deposits by Biometal Depletion

    Get PDF
    Zn(II) and Cu(II) precipitate Abeta in vitro into insoluble aggregates that are dissolved by metal chelators. We now report evidence that these biometals also mediate the deposition of Abeta amyloid in Alzheimer's disease, since the solubilization of Abeta from post-mortem brain tissue was significantly increased by the presence of chelators, EGTA, N,N,N',N'-tetrakis(2-pyridyl-methyl) ethylene diamine, and bathocuproine. Efficient extraction of Abeta also required Mg(II) and Ca(II). The chelators were more effective in extracting Abeta from Alzheimer's disease brain tissue than age-matched controls, suggesting that metal ions differentiate the chemical architecture of amyloid in Alzheimer's disease. Agents that specifically chelate copper and zinc ions but preserve Mg(II) and Ca(II) may be of therapeutic value in Alzheimer's disease

    Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy

    Get PDF
    Corticobasal degeneration (CBD) is a neurodegenerative disorder affecting movement and cognition, definitively diagnosed only at autopsy. Here, we conduct a genome-wide association study (GWAS) in CBD cases (n = 152) and 3, 311 controls, and 67 CBD cases and 439 controls in a replication stage. Associations with meta-analysis were 17q21 at MAPT (P = 1.42 x 10(-12)),8p12 at lnc-KIF13B-1, a long non-coding RNA (rs643472;P = 3.41 x 10(-8)),and 2p22 at SOS1 (rs963731;P = 1.76 x 10(-7)). Testing for association of CBD with top progressive supranuclear palsy (PSP) GWAS single-nucleotide polymorphisms (SNPs) identified associations at MOBP (3p22;rs1768208;P = 2.07 x 10(-7)) and MAPT H1c (17q21;rs242557;P = 7.91 x 10(-6)). We previously reported SNP/transcript level associations with rs8070723/MAPT, rs242557/MAPT, and rs1768208/MOBP and herein identified association with rs963731/SOS1. We identify new CBD susceptibility loci and show that CBD and PSP share a genetic risk factor other than MAPT at 3p22 MOBP (myelin-associated oligodendrocyte basic protein)

    SNP-SNP interaction analysis of NF-kappa B signaling pathway on breast cancer survival

    Get PDF
    In breast cancer, constitutive activation of NF-kappa B has been reported, however, the impact of genetic variation of the pathway on patient prognosis has been little studied. Furthermore, a combination of genetic variants, rather than single polymorphisms, may affect disease prognosis. Here, in an extensive dataset (n = 30,431) from the Breast Cancer Association Consortium, we investigated the association of 917 SNPs in 75 genes in the NF-kappa B pathway with breast cancer prognosis. We explored SNP-SNP interactions on survival using the likelihood-ratio test comparing multivariate Cox' regression models of SNP pairs without and with an interaction term. We found two interacting pairs associating with prognosis: patients simultaneously homozygous for the rare alleles of rs5996080 and rs7973914 had worse survival (HRinteraction 6.98, 95% CI= 3.3-14.4, P=1.42E-07), and patients carrying at least one rare allele for rs17243893 and rs57890595 had better survival (HRinteraction 0.51, 95% CI= 0.3-0.6, P = 2.19E-05). Based on in silico functional analyses and literature, we speculate that the rs5996080 and rs7973914 loci may affect the BAFFR and TNFR1/TNFR3 receptors and breast cancer survival, possibly by disturbing both the canonical and non-canonical NF-kappa B pathways or their dynamics, whereas, rs17243893-rs57890595 interaction on survival may be mediated through TRAF2-TRAIL-R4 interplay. These results warrant further validation and functional analyses.Peer reviewe
    corecore