165 research outputs found

    Structure and blood compatibility of highly oriented PLA/MWNTs composites produced by solid hot drawing

    Get PDF
    YesHighly oriented poly(lactic acid) (PLA)/multi-walled carbon nanotubes (MWNTs) composites were fabricated through solid hot drawing technology in an effort to improve the mechanical properties and blood biocompatibility of PLA as blood-contacting medical devices. It was found that proper MWNTs content and drawing orientation can improve the tensile strength and modulus of PLA dramatically. With the increase in draw ratio, the cold crystallization peak became smaller, and the glass transition and the melting peak of PLA moved to high temperature, while the crystallinity increased, and the grain size decreased, indicating the stress-induced crystallization of PLA during drawing. MWNTs showed a nucleation effect on PLA, leading to the rise in the melting temperature, increase in crystallinity and reduction of spherulite size for the composites. Moreover, the intensity of (002) diffraction of MWNTs increased with draw ratio, indicating that MWNTs were preferentially aligned and oriented during drawing. Microstructure observation demonstrated that PLA matrix had an ordered fibrillar bundle structure, and MWNTs in the composite tended to align parallel to the drawing direction. In addition, the dispersion of MWNTs in PLA was also improved by orientation. Introduction of MWNTs and drawing orientation could significantly enhance the blood compatibility of PLA by prolonging kinetic clotting time, reducing hemolysis ratio and platelet activation

    Orientation direction dependency of cavitation in pre-oriented isotactic polypropylene at large strains

    Get PDF
    YesOrientation direction dependency of whitening activated at large strains was studied using four pre-oriented isotactic polypropylene (iPP) samples with different molecular weights stretched along different directions with respect to the pre-orientation (0Ā°, 45Ā°, and 90Ā°) by means of in situ wide-, small-, and ultra-small-angle X-ray scattering techniques. A macroscopic fracture of iPP materials was also observed following the stress whitening at large strains. These two associated processes in pre-oriented iPP samples at elevated temperatures were found to be governed by not only the molecular weight of iPP but also the pre-orientation direction. For a certain pre-orientation direction of iPP, both the critical stress of cavitation induced-whitening and failure stress increased with increasing molecular weight. For one given molecular weight, the pre-oriented iPP showed the smallest critical stress for whitening and failure stress along the pre-orientation direction (0Ā°) while the samples displayed larger values for the same behaviors when stretched at 45Ā° or 90Ā° with respect to the pre-orientation direction. Such behavior suggested that oriented amorphous networks, with different mechanical strengths, can be generated during the second deformation processes in these pre-oriented iPP samples. The evolution of inter-fibrillar tie chains in highly oriented amorphous networks was considered as the main factor controlling the response of the inner network to the external stress since the cavitation-induced whitening activated at large strains was caused by the failure of load bearing inter-fibrillar tie chains in the oriented amorphous network
    • ā€¦
    corecore