4 research outputs found

    Laboratory phenomics predicts field performance and identifies superior indica haplotypes for early seedling vigour in dry direct-seeded rice

    Get PDF
    Seedling vigour is an important agronomic trait and is gaining attention in Asian rice (Oryza sativa) as cultivation practices shift from transplanting to forms of direct seeding. To understand the genetic control of rice seedling vigour in dry direct seeded (aerobic) conditions we measured multiple seedling traits in 684 accessions from the 3000 Rice Genomes (3K-RG) population in both the laboratory and field at three planting depths. Our data show that phenotyping of mesocotyl length in laboratory conditions is a good predictor of field performance. By performing a genome wide association study, we found that the main QTL for mesocotyl length, percentage seedling emergence and shoot biomass are co-located on the short arm of chromosome 7. We show that haplotypes in the indica subgroup from this region can be used to predict the seedling vigour of 3K-RG accessions. The selected accessions may serve as potential donors in genomics-assisted breeding programs

    DECUSSATE network with flowering genes explains the variable effects of qDTY12.1 to rice yield under drought across genetic backgrounds

    Get PDF
    The impact of qDTY12.1 in maintaining yield under drought has not been consistent across genetic backgrounds. We hypothesized that synergism or antagonism with additive-effect peripheral genes across the background genome either enhances or undermines its full potential. By modeling the transcriptional networks across sibling qDTY12.1-introgression lines with contrasting yield under drought (LPB = low-yield penalty; HPB = high-yield penalty), the qDTY12.1-encoded DECUSSATE gene (OsDEC) was revealed as the core of a synergy with other genes in the genetic background. OsDEC is expressed in flag leaves and induced by progressive drought at booting stage in LPB but not in HPB. The unique OsDEC signature in LPB is coordinated with 35 upstream and downstream peripheral genes involved in floral development through the cytokinin signaling pathway. Results support the differential network rewiring effects through genetic coupling–uncoupling between qDTY12.1 and other upstream and downstream peripheral genes across the distinct genetic backgrounds of LPB and HPB. The functional DEC-network in LPB defines a mechanism for early flowering as a means for avoiding the drought-induced depletion of photosynthate needed for reproductive growth. Its impact is likely through the timely establishment of stronger source-sink dynamics that sustains a robust reproductive transition under drought
    corecore