5 research outputs found

    Brown Adipose Tissue Biodistribution and Correlations Particularities in Parathyroid Pathology Personalized Diagnosis

    No full text
    Brown adipose tissue (BAT) participates in the regulation of whole-body metabolism by producing a variety of adipokines. This study investigates into the BAT pattern and the clinical aspects of overweight and obese (OOB) vs. non-obese (NO) hyperparathyroidism (HPT) patients with the aim of assessing the impact of BAT and obesity on HPT. Parathyroid scans performed on 441 HPT patients between 2015 and 2020 were retrospectively analyzed in order to select the images with active BAT. Based on their BMI, the patients with active BAT were divided into OOB vs. NO. The results showed that BAT was present in cervical and supraclavicular regions, with a single localization especially among NO vs. multiple sites among OOB. The (total counts/pixels)BAT/(total counts/pixels)non-BAT ratio in the right cervical localization showed a significant difference between the groups with higher values in OOB. BMI, PTH, FT4, vitamin D, magnesium, creatinine, and urea had significant correlations with BAT ratios. The predictive values showed that right cervical ratios higher than 1.52 and right supraclavicular ratios lower than 1.15 indicated an increased probability of being OOB. The significant correlations between BAT activation in OOB vs. NO and HPT clinical parameters could be useful for developing potential treatments based on this tissue

    The Landscape of Nanovectors for Modulation in Cancer Immunotherapy

    No full text
    Immunotherapy represents a promising strategy for the treatment of cancer, which functions via the reprogramming and activation of antitumor immunity. However, adverse events resulting from immunotherapy that are related to the low specificity of tumor cell-targeting represent a limitation of immunotherapy’s efficacy. The potential of nanotechnologies is represented by the possibilities of immunotherapeutical agents being carried by nanoparticles with various material types, shapes, sizes, coated ligands, associated loading methods, hydrophilicities, elasticities, and biocompatibilities. In this review, the principal types of nanovectors (nanopharmaceutics and bioinspired nanoparticles) are summarized along with the shortcomings in nanoparticle delivery and the main factors that modulate efficacy (the EPR effect, protein coronas, and microbiota). The mechanisms by which nanovectors can target cancer cells, the tumor immune microenvironment (TIME), and the peripheral immune system are also presented. A possible mathematical model for the cellular communication mechanisms related to exosomes as nanocarriers is proposed

    Improved Personalised Neuroendocrine Tumours’ Diagnosis Predictive Power by New Receptor Somatostatin Image Processing Quantification

    No full text
    Although neuroendocrine tumours (NETs) are intensively studied, their diagnosis and consequently personalised therapy management is still puzzling due to their tumoral heterogeneity. In their theragnosis algorithm, receptor somatostatin scintigraphy takes the central place, the diagnosis receptor somatostatin analogue (RSA) choice depending on laboratory experience and accessibility. However, in all cases, the results depend decisively on correct radiotracer tumoral uptake quantification, where unfortunately there are still unrevealed clues and lack of standardization. We propose an improved method to quantify the biodistribution of gamma-emitting RSA, using tissular corrected uptake indices. We conducted a bi-centric retrospective study on 101 patients with different types of NETs. Three uptake indices obtained after applying new corrections to areas of interest drawn for the tumour and for three reference organs (liver, spleen and lung) were statistically analysed. For the corrected pathological uptake indices, the results showed a significant decrease in the error of estimating the occurrence of errors and an increase in the diagnostic predictive power for NETs, especially in the case of lung-referring corrected index. In conclusion, these results support the importance of corrected uptake indices use in the analysis of 99mTcRSA biodistribution for a better personalised diagnostic accuracy of NETs patients

    Role of Diphosphonates Bone Scintigraphy in Correlation with Biomarkers for a Personalized Approach to ATTR Cardiac Amyloidosis in North-Eastern Romania

    No full text
    Transthyretin cardiac amyloidosis (ATTR) is a rare cardiac protein deposition disease characterized by progressive thickening of both ventricles, the inter-atrial-ventricular septum and the atrioventricular valves. The gold standard method for diagnosing this rare pathology is endomyocardial biopsy. If this method cannot be used, the alternative is a mixture of clinical and paraclinical tests. Over the course of five years, we examined 58 patients suspected of cardiac amyloidosis based on electrocardiography and ultrasonography criteria, who had been sent for bone scintigraphy in order to determine the presence of ATTR cardiac amyloidosis. However, the final diagnosis was set by correlating the bone scan with genetic testing, free light chain dosage or soft tissue biopsy. Based on the final diagnosis we analyzed the patients’ predominant biomarkers in order to determine a possible correlation between them. This analysis is designed to help the general practitioner set a possible cardiac amyloidosis diagnosis

    Role of Diphosphonates Bone Scintigraphy in Correlation with Biomarkers for a Personalized Approach to ATTR Cardiac Amyloidosis in North-Eastern Romania

    No full text
    Transthyretin cardiac amyloidosis (ATTR) is a rare cardiac protein deposition disease characterized by progressive thickening of both ventricles, the inter-atrial-ventricular septum and the atrioventricular valves. The gold standard method for diagnosing this rare pathology is endomyocardial biopsy. If this method cannot be used, the alternative is a mixture of clinical and paraclinical tests. Over the course of five years, we examined 58 patients suspected of cardiac amyloidosis based on electrocardiography and ultrasonography criteria, who had been sent for bone scintigraphy in order to determine the presence of ATTR cardiac amyloidosis. However, the final diagnosis was set by correlating the bone scan with genetic testing, free light chain dosage or soft tissue biopsy. Based on the final diagnosis we analyzed the patients’ predominant biomarkers in order to determine a possible correlation between them. This analysis is designed to help the general practitioner set a possible cardiac amyloidosis diagnosis
    corecore