8 research outputs found

    Atypical Pharmacodynamic Properties and Metabolic Profile of the Abused Synthetic Cannabinoid AB-PINACA: Potential Contribution to Pronounced Adverse Effects Relative to Δ9-THC

    Get PDF
    Recreational use of marijuana is associated with few adverse effects, but abuse of synthetic cannabinoids (SCBs) can result in anxiety, psychosis, chest pain, seizures and death. To potentially explain higher toxicity associated with SCB use, we hypothesized that AB-PINACA, a common second generation SCB, exhibits atypical pharmacodynamic properties at CB1 cannabinoid receptors (CB1Rs) and/or a distinct metabolic profile when compared to Δ9-tetrahydrocannabinol (Δ9-THC), the principal psychoactive cannabinoid present in marijuana. Liquid chromatography tandem mass spectrometry (LC/MS) identified AB-PINACA and monohydroxy metabolite(s) as primary phase I metabolites (4OH-AB-PINACA and/or 5OH-AB-PINACA) in human urine and serum obtained from forensic samples. In vitro experiments demonstrated that when compared to Δ9-THC, AB-PINACA exhibits similar affinity for CB1Rs, but greater efficacy for G-protein activation and higher potency for adenylyl cyclase inhibition. Chronic treatment with AB-PINACA also results in greater desensitization of CB1Rs (e.g., tolerance) than Δ9-THC. Importantly, monohydroxy metabolites of AB-PINACA retain affinity and full agonist activity at CB1Rs. Incubation of 4OH-AB-PINACA and 5OH-AB-PINACA with human liver microsomes (HLMs) results in limited glucuronide formation when compared to that of JWH-018-M2, a major monohydroxylated metabolite of the first generation SCB JWH-018. Finally, AB-PINACA and 4OH-AB-PINACA are active in vivo, producing CB1R-mediated hypothermia in mice. Taken collectively, the atypical pharmacodynamic properties of AB-PINACA at CB1Rs relative to Δ9-THC (e.g., higher potency/efficacy and greater production of desensitization), coupled with an unusual metabolic profile (e.g., production of metabolically stable active phase I metabolites) may contribute to the pronounced adverse effects observed with abuse of this SCB compared to marijuana

    The monoacylglycerol lipase inhibitor KML29 with gabapentin synergistically produces analgesia in mice

    Get PDF
    BACKGROUND AND PURPOSE Gabapentin is commonly prescribed for nerve pain but may also cause dizziness, sedation and gait disturbances. Similarly, inhibition of the endogenous cannabinoid enzyme monoacylglycerol lipase (MAGL) has antinociceptive and anti-inflammatory properties but also induces sedation in mice at high doses. To limit these side effects, the present study investigated the analgesic effects of coadministering a MAGL inhibitor with gabapentin. EXPERIMENTAL APPROACH Mice subjected to the chronic constriction injury model of neuropathic pain were administered the MAGL inhibitor KML29 (1–40 mg·kg1 , i.p.), gabapentin (1–50 mg·kg1 , i.p.) or both compounds. Mice were tested for mechanical and cold allodynia. The function and expression of cannabinoid CB1 receptors in whole brain homogenates and lipid profile of spinal cords were assessed after repeated drug administration. KEY RESULTS The combination of low-dose KML29:gabapentin additively attenuated mechanical allodynia and synergistically reduced cold allodynia. The CB1 antagonist, rimonabant, partially reversed the anti-allodynic effects of KML29:gabapentin in mechanical allodynia but not cold allodynia. The anti-allodynic effects of KML29:gabapentin did not undergo tolerance in mechanical allodynia after repeated administration but produced mild tolerance in cold allodynia. High dose KML29 alone reduced CB1 receptor expression and function, but KML29:gabapentin reduced the density of CB1 receptors but did not alter their function. KML29:gabapentin influenced additional signalling pathways (including fatty acids) other than the pathways activated by a higher dose of either drug alone. CONCLUSION AND IMPLICATIONS These data support the strategy of combining MAGL inhibition with a commonly prescribed analgesic as a therapeutic approach for attenuating neuropathic pain
    corecore