32 research outputs found

    Sphingosine-1-phosphate and macrophage biology—how the sphinx tames the big eater

    No full text
    The sphingolipid sphingosine-1-phosphate (S1P) is produced by sphingosine kinases to either signal through intracellular targets or to activate a family of specific G-protein-coupled receptors (S1PR). S1P levels are usually low in peripheral tissues compared to the vasculature, forming a gradient that mediates lymphocyte trafficking. However, S1P levels rise during inflammation in peripheral tissues, thereby affecting resident or recruited immune cells, including macrophages. As macrophages orchestrate initiation and resolution of inflammation, the sphingosine kinase/S1P/S1P-receptor axis emerges as an important determinant of macrophage function in the pathogenesis of inflammatory diseases such as cancer, atherosclerosis, and infection. In this review, we therefore summarize the current knowledge how S1P affects macrophage biology

    Keep a Little Fire Burning—The Delicate Balance of Targeting Sphingosine-1-Phosphate in Cancer Immunity

    No full text
    The sphingolipid sphingosine-1-phosphate (S1P) promotes tumor development through a variety of mechanisms including promoting proliferation, survival, and migration of cancer cells. Moreover, S1P emerged as an important regulator of tumor microenvironmental cell function by modulating, among other mechanisms, tumor angiogenesis. Therefore, S1P was proposed as a target for anti-tumor therapy. The clinical success of current cancer immunotherapy suggests that future anti-tumor therapy needs to consider its impact on the tumor-associated immune system. Hereby, S1P may have divergent effects. On the one hand, S1P gradients control leukocyte trafficking throughout the body, which is clinically exploited to suppress auto-immune reactions. On the other hand, S1P promotes pro-tumor activation of a diverse range of immune cells. In this review, we summarize the current literature describing the role of S1P in tumor-associated immunity, and we discuss strategies for how to target S1P for anti-tumor therapy without causing immune paralysis

    Beyond immune cell migration : the emerging role of the sphingosine-1-phosphate receptor S1PR4 as a modulator of innate immune cell activation

    No full text
    The sphingolipid sphingosine-1-phosphate (S1P) emerges as an important regulator of immunity, mainly by signaling through a family of five specific G protein-coupled receptors (S1PR1–5). While S1P signaling generally has the potential to affect not only trafficking but also differentiation, activation, and survival of a diverse range of immune cells, the specific outcome depends on the S1P receptor repertoire expressed on a given cell. Among the S1PRs, S1PR4 is specifically abundant in immune cells, suggesting a major role of the S1P/S1PR4 axis in immunity. Recent studies indeed highlight its role in activation of immune cells, differentiation, and, potentially, trafficking. In this review, we summarize the emerging data that support a major role of S1PR4 in modulating immunity in humans and mice and discuss therapeutic implications

    Chronic Hypoxia Enhances ÎČ-Oxidation-Dependent Electron Transport via Electron Transferring Flavoproteins

    No full text
    Hypoxia poses a stress to cells and decreases mitochondrial respiration, in part by electron transport chain (ETC) complex reorganization. While metabolism under acute hypoxia is well characterized, alterations under chronic hypoxia largely remain unexplored. We followed oxygen consumption rates in THP-1 monocytes during acute (16 h) and chronic (72 h) hypoxia, compared to normoxia, to analyze the electron flows associated with glycolysis, glutamine, and fatty acid oxidation. Oxygen consumption under acute hypoxia predominantly demanded pyruvate, while under chronic hypoxia, fatty acid- and glutamine-oxidation dominated. Chronic hypoxia also elevated electron-transferring flavoproteins (ETF), and the knockdown of ETF⁻ubiquinone oxidoreductase lowered mitochondrial respiration under chronic hypoxia. Metabolomics revealed an increase in citrate under chronic hypoxia, which implied glutamine processing to α-ketoglutarate and citrate. Expression regulation of enzymes involved in this metabolic shunting corroborated this assumption. Moreover, the expression of acetyl-CoA carboxylase 1 increased, thus pointing to fatty acid synthesis under chronic hypoxia. Cells lacking complex I, which experienced a markedly impaired respiration under normoxia, also shifted their metabolism to fatty acid-dependent synthesis and usage. Taken together, we provide evidence that chronic hypoxia fuels the ETC via ETFs, increasing fatty acid production and consumption via the glutamine-citrate-fatty acid axis

    Chronic Hypoxia Enhances ÎČ-Oxidation-Dependent Electron Transport via Electron Transferring Flavoproteins

    No full text
    Hypoxia poses a stress to cells and decreases mitochondrial respiration, in part by electron transport chain (ETC) complex reorganization. While metabolism under acute hypoxia is well characterized, alterations under chronic hypoxia largely remain unexplored. We followed oxygen consumption rates in THP-1 monocytes during acute (16 h) and chronic (72 h) hypoxia, compared to normoxia, to analyze the electron flows associated with glycolysis, glutamine, and fatty acid oxidation. Oxygen consumption under acute hypoxia predominantly demanded pyruvate, while under chronic hypoxia, fatty acid- and glutamine-oxidation dominated. Chronic hypoxia also elevated electron-transferring flavoproteins (ETF), and the knockdown of ETF⁻ubiquinone oxidoreductase lowered mitochondrial respiration under chronic hypoxia. Metabolomics revealed an increase in citrate under chronic hypoxia, which implied glutamine processing to α-ketoglutarate and citrate. Expression regulation of enzymes involved in this metabolic shunting corroborated this assumption. Moreover, the expression of acetyl-CoA carboxylase 1 increased, thus pointing to fatty acid synthesis under chronic hypoxia. Cells lacking complex I, which experienced a markedly impaired respiration under normoxia, also shifted their metabolism to fatty acid-dependent synthesis and usage. Taken together, we provide evidence that chronic hypoxia fuels the ETC via ETFs, increasing fatty acid production and consumption via the glutamine-citrate-fatty acid axis

    Immune checkpoint blockade improves chemotherapy in the PyMT mammary carcinoma mouse model

    No full text
    Despite the success of immune checkpoint blockade in cancer, the number of patients that benefit from this revolutionary treatment option remains low. Therefore, efforts are being undertaken to sensitize tumors for immune checkpoint blockade, which includes combining immune checkpoint blocking agents such as anti-PD-1 antibodies with standard of care treatments. Here we report that a combination of chemotherapy (doxorubicin) and immune checkpoint blockade (anti-PD-1 antibodies) induces superior tumor control compared to chemotherapy and immune checkpoint blockade alone in the murine autochthonous polyoma middle T oncogene-driven (PyMT) mammary tumor model. Using whole transcriptome analysis, we identified a set of genes that were upregulated specifically upon chemoimmunotherapy. This gene signature and, more specifically, a condensed four-gene signature predicted favorable survival of human mammary carcinoma patients in the METABRIC cohort. Moreover, PyMT tumors treated with chemoimmunotherapy contained higher levels of cytotoxic lymphocytes, particularly natural killer cells (NK cells). Gene set enrichment analysis and bead-based ELISA measurements revealed increased IL-27 production and signaling in PyMT tumors upon chemoimmunotherapy. Moreover, IL-27 signaling improved NK cell cytotoxicity against PyMT cells in vitro. Taken together, our data support recent clinical observations indicating a benefit of chemoimmunotherapy compared to monotherapy in breast cancer and suggest potential underlying mechanisms

    Macrophage HIF‐2α regulates tumor‐suppressive Spint1 in the tumor microenvironment

    No full text
    In solid tumors, tumor‐associated macrophages (TAMs) commonly accumulate within hypoxic areas. Adaptations to such environments evoke transcriptional changes by the hypoxia‐inducible factors (HIFs). While HIF‐1α is ubiquitously expressed, HIF‐2α appears tissue‐specific with consequences of HIF‐2α expression in TAMs only being poorly characterized. An E0771 allograft breast tumor model revealed faster tumor growth in myeloid HIF‐2α knockout (HIF‐2αLysM−/−) compared with wildtype (wt) mice. In an RNA‐sequencing approach of FACS sorted wt and HIF‐2α LysM−/− TAMs, serine protease inhibitor, Kunitz type‐1 ( Spint1) emerged as a promising candidate for HIF‐2α‐dependent regulation. We validated reduced Spint1 messenger RNA expression and concomitant Spint1 protein secretion under hypoxia in HIF‐2α‐deficient bone marrow–derived macrophages (BMDMs) compared with wt BMDMs. In line with the physiological function of Spint1 as an inhibitor of hepatocyte growth factor (HGF) activation, supernatants of hypoxic HIF‐2α knockout BMDMs, not containing Spint1, were able to release proliferative properties of inactive pro‐HGF on breast tumor cells. In contrast, hypoxic wt BMDM supernatants containing abundant Spint1 amounts failed to do so. We propose that Spint1 contributes to the tumor‐suppressive function of HIF‐2α in TAMs in breast tumor development

    Macrophage HIF‐2α regulates tumor‐suppressive Spint1 in the tumor microenvironment

    No full text
    In solid tumors, tumor‐associated macrophages (TAMs) commonly accumulate within hypoxic areas. Adaptations to such environments evoke transcriptional changes by the hypoxia‐inducible factors (HIFs). While HIF‐1α is ubiquitously expressed, HIF‐2α appears tissue‐specific with consequences of HIF‐2α expression in TAMs only being poorly characterized. An E0771 allograft breast tumor model revealed faster tumor growth in myeloid HIF‐2α knockout (HIF‐2αLysM−/−) compared with wildtype (wt) mice. In an RNA‐sequencing approach of FACS sorted wt and HIF‐2α LysM−/− TAMs, serine protease inhibitor, Kunitz type‐1 ( Spint1) emerged as a promising candidate for HIF‐2α‐dependent regulation. We validated reduced Spint1 messenger RNA expression and concomitant Spint1 protein secretion under hypoxia in HIF‐2α‐deficient bone marrow–derived macrophages (BMDMs) compared with wt BMDMs. In line with the physiological function of Spint1 as an inhibitor of hepatocyte growth factor (HGF) activation, supernatants of hypoxic HIF‐2α knockout BMDMs, not containing Spint1, were able to release proliferative properties of inactive pro‐HGF on breast tumor cells. In contrast, hypoxic wt BMDM supernatants containing abundant Spint1 amounts failed to do so. We propose that Spint1 contributes to the tumor‐suppressive function of HIF‐2α in TAMs in breast tumor development
    corecore