5 research outputs found

    No effect of adding dairy lipids or long chain polyunsaturated fatty acids on formula tolerance and growth in full term infants: a randomized controlled trial

    No full text
    Abstract Background When breastfeeding is not possible, infants are fed formulas in which lipids are usually of plant origin. However, the use of dairy fat in combination with plant oils enables a lipid profile in formula closer to breast milk in terms of fatty acid composition, triglyceride structure and cholesterol content. The objectives of this study were to investigate the impact on growth and gastrointestinal tolerance of a formula containing a mix of dairy lipids and plant oils in healthy infants. Methods This study was a monocentric, double-blind, controlled, randomized trial. Healthy term infants aged less than 3 weeks whose mothers did not breastfeed were randomly allocated to formula containing either: a mix of plant oils and dairy fat (D), only plant oils (P) or plant oils supplemented with long-chain polyunsaturated fatty acids (PDHA). Breastfed infants were included in a reference group (BF). Anthropometric parameters and body composition were measured after 2 and 4 months. Gastrointestinal tolerance was evaluated during 2 day-periods after 1 and 3 months thanks to descriptive parameters reported by parents. Nonrandomized BF infants were not included in the statistical analysis. Results Eighty eight formula-fed and 29 BF infants were enrolled. Gains of weight, recumbent length, cranial circumference and fat mass were similar between the 3 formula-fed groups at 2 and 4 months and close to those of BF. Z-scores for weight, recumbent length and cranial circumference in all groups were within normal ranges for growth standards. No significant differences were noted among the 3 formula groups in gastrointestinal parameters (stool frequency/consistency/color), occurrence of gastrointestinal symptoms (abdominal pain, flatulence, regurgitation) or infant’s behavior. Conclusions A formula containing a mix of dairy lipids and plant oils enables a normal growth in healthy newborns. This formula is well tolerated and does not lead to abnormal gastrointestinal symptoms. Consequently, reintroduction of dairy lipids could represent an interesting strategy to improve lipid quality in infant formulas. Trial registration ClinicalTrials.gov Identifier NCT01611649 , retrospectively registered on May 25, 2012

    Impact of Lactobacillus fermentum and dairy lipids in the maternal diet on the fatty acid composition of pups' brain and peripheral tissues

    No full text
    The aim of the study was to determine the effect of maternal diets administered since day 1 of gestation and containing dairy lipids or vegetable oils differing in the supply of n-3 polyunsaturated fatty acids (n-3 PUFAs) (equilibrated or deficient) and of Lactobacillus fermentum (L. fermentum) on the docosahexaenoic acid (DHA) accretion in the pups at postnatal day 14 in the prefrontal cortex (PFC) and hippocampus (HC) for brain structures and in the liver and adipose tissue for peripheral tissues. Maternal milk fatty acid composition was also assessed by analyzing the fatty acid composition of the gastric content of the pups. DHA was higher in mice supplemented with L. fermentum than in mice in the deficient group in HC and PFC and also in liver and adipose tissue. This increase could be linked to the slight but significant increase in C18:3n-3 in the maternal milk. This proportion was comparable in the dairy lipid group for which the brain DHA level was the highest. L. fermentum may have a key role in the protection of the brain during the perinatal period via the neuronal accretion of n-3 PUFAs, especially during n-3 PUFA deficiency

    An infant formula containing dairy lipids increased red blood cell membrane Omega 3 fatty acids in 4 month-old healthy newborns: a randomized controlled trial

    No full text
    Abstract Background When breastfeeding is not possible, infants are fed formulas (IF) in which lipids are usually of plant origin. However, the use of dairy fat in combination with plant oils enables a lipid profile closer to breast milk in terms of fatty acid (FA) composition, triglyceride structure, polar lipids and cholesterol contents. The objective of this study was to determine the effect of an IF containing a mix of dairy fat and plant oils on Omega-3 FA content in red blood cells (RBC). Methods This study was a monocentric, double-blind, controlled, randomized trial. Healthy term infants were fed formulas containing a mix of dairy fat and plant oils (D), plant oils (P) or plant oils supplemented with ARA and DHA (PDHA). Breastfed infants were enrolled as a reference group (BF). FA in RBC phosphatidylethanolamine was evaluated after 4 months and FA in whole blood were evaluated at enrollment and after 4 months by gas chromatography. Differences between groups were assessed using an analysis of covariance with sex and gestational age as covariates. Results Seventy IF-fed and nineteen BF infants completed the protocol. At 4 months, RBC total Omega-3 FA levels in infants fed formula D were significantly higher than in group P and similar to those in groups PDHA and BF. RBC DHA levels in group D were also higher than in group P but lower than in groups PDHA and BF. RBC n-3 DPA levels in group D were higher than in groups P, PDHA and BF. A decrease in proportions of Omega-3 FA in whole blood was observed in all groups. Conclusions A formula containing a mix of dairy lipids and plant oils increased the endogenous conversion of Omega-3 long-chain FA from precursor, leading to higher total Omega-3, DPA and DHA status in RBC than a plant oil-based formula. Modifying lipid quality in IF by adding dairy lipids should be considered as an interesting method to improve Omega-3 FA status. Trial registration Identifier NCT01611649, retrospectively registered on May 25, 2012

    Enriched dairy fat matrix diet prevents early life lipopolysaccharide-induced spatial memory impairment at adulthood

    No full text
    Polyunsaturated fatty acids (PUFAs) are essential fatty acids, which are critical for brain development and later life cognitive functions. The main brain PUFAs are docosahexaenoic acid (DHA) for the n-3 family and arachidonic acid (ARA) for the n-6 family, which are provided to the post-natal brain by breast milk or infant formula. Recently, the use of dairy lipids (DL) in replacement of vegetable lipids (VL) was revealed to potently promote the accretion of DHA in the developing brain. Brain DHA, in addition to be a key component of brain development, display potent anti-inflammatory activities, which protect the brain from adverse inflammatory events. In this work, we evaluated the protective effect of partial replacement of VL by DL, supplemented or not with DHA and ARA, on post-natal inflammation and its consequence on memory. Mice were fed with diets poor in vegetal n-3 PUFA (Def VL), balanced in vegetal n-3/n-6 PUFA (Bal VL), balanced in dairy lipids (Bal DL) or enriched in DHA and ARA (Supp VL; Supp DL) from the first day of gestation until adulthood. At post-natal day 14 (PND14), pups received a single administration of the endotoxin lipopolysaccharide (LPS) and brain cytokine expression, microglia phenotype and neurogenesis were measured. In a second set of experiments, memory and neurogenesis were measured at adulthood. Overall, our data showed that lipid quality of the diet modulates early life LPS effect on microglia phenotype, brain cytokine expression and neurogenesis at PND14 and memory at adulthood. In particular, Bal DL diet protects from the adverse effect of early life LPS exposure on PND14 neurogenesis and adult spatial memory
    corecore