17 research outputs found

    Lipid Peroxidation: Pathophysiology and Pharmacological Implications in the Eye

    Get PDF
    Oxygen-derived free radicals such as hydroxyl and hydroperoxyl species have been shown to oxidize phospholipids and other membrane lipid components leading to lipid peroxidation. In the eye, lipid peroxidation has been reported to play an important role in degenerative ocular diseases (age-related macular degeneration, cataract, glaucoma, diabetic retinopathy). Indeed, ocular tissues are prone to damage from reactive oxygen species due to stress from constant exposure of the eye to sunlight, atmospheric oxygen and environmental chemicals. Furthermore, free radical catalyzed peroxidation of long chain polyunsaturated acids (LCPUFAs) such as arachidonic acid and docosahexaenoic acid leads to generation of LCPUFA metabolites including isoprostanes and neuroprostanes that may further exert pharmacological/toxicological actions in ocular tissues. Evidence from literature supports the presence of endogenous defense mechanisms against reactive oxygen species in the eye, thereby presenting new avenues for the prevention and treatment of ocular degeneration. Hydrogen peroxide (H2O2) and synthetic peroxides can exert pharmacological and toxicological effects on tissues of the anterior uvea of several mammalian species. There is evidence suggesting that the retina, especially retinal ganglion cells can exhibit unique characteristics of antioxidant defense mechanisms. In the posterior segment of the eye, H2O2 and synthetic peroxides produce an inhibitory action on glutamate release (using [3H]-D-aspartate as a marker), in vitro and on the endogenous glutamate and glycine concentrations in vivo. In addition to peroxides, isoprostanes can elicit both excitatory and inhibitory effects on norepinephrine (NE) release from sympathetic nerves in isolated mammalian iris ciliary bodies. Whereas isoprostanes attenuate dopamine release from mammalian neural retina, in vitro, these novel arachidonic acid metabolites exhibit a biphasic regulatory effect on glutamate release from retina an

    Effects of Hydrogen Sulfide-Releasing Compounds on Aqueous Humor Outflow Facility in Porcine Ocular Anterior Segments, Ex Vivo

    No full text
    Purpose: To investigate the pharmacological actions of hydrogen sulfide (H2S)-releasing compounds l-cysteine and sodium hydrosulfide (NaHS) on aqueous humor (AH) outflow facility in porcine ocular anterior segment. Methods: Porcine ocular anterior segments were perfused with Dulbecco\u27s modified Eagle\u27s medium at a constant pressure of 7.35 mmHg. After stable outflow baseline, explants were exposed to NaHS or l-cysteine. The increase in outflow generated by the H2S-releasing compounds was measured in the absence and presence of inhibitor of H2S biosynthesis (aminooxyacetic acid; AOAA), blocker of KATP channels (glibenclamide), and inhibitor of adenylyl cyclase (SQ 22536). Hematoxylin and eosin (H&E) staining was used to assess trabecular meshwork (TM) morphology. Results: l-cysteine elicited a concentration-dependent increase in AH outflow facility, reaching maximal effect at 100 nM (150.6% ± 17.2% of basal level). This increase in outflow induced by l-cysteine was significantly (P \u3c 0.001) antagonized by AOAA (30 μM) and glibenclamide (100 μM). AOAA and glibenclamide had no significant action on baseline outflow, whereas SQ 22536 (100 μM) increased outflow for only an hour. In addition, NaHS produced a concentration-dependent increase in AH outflow, with a maximal effect at 10 μM (151.4% ± 22.9% of basal level). Likewise, the increase in outflow caused by NaHS was significantly (P \u3c 0.04) blocked by glibenclamide and SQ 22536. H&E staining revealed that l-cysteine or NaHS did not alter TM conformation. Conclusion: H2S-releasing compounds can increase outflow facility in porcine ocular anterior segment. The stimulatory action of these compounds on outflow is mediated, in part by endogenously produced H2S, KATP channels, and adenylyl cyclase

    Regulation of aqueous humor dynamics by hydrogen sulfide: Potential role in glaucoma pharmacotherapy

    No full text
    Hydrogen sulfide (H 2 S) is a gaseous transmitter with well-known biological actions in a wide variety of tissues and organs. The potential involvement of this gas in physiological and pathological processes in the eye has led to several in vitro, ex vivo, and in vivo studies to understand its pharmacological role in some mammalian species. Evidence from literature demonstrates that 4 enzymes responsible for the biosynthesis of this gas (cystathionine β-synthase, CBS; cystathionine γ-lyase, CSE; 3-mercaptopyruvate sulfurtransferase, 3MST; and d-amino acid oxidase) are present in the cornea, iris, ciliary body, lens, and retina. Studies of the pharmacological actions of H 2 S (using several compounds as fast- and slow-releasing gas donors) on anterior uveal tissues reveal an effect on sympathetic neurotransmission and the ability of the gas to relax precontracted iris and ocular vascular smooth muscles, responses that were blocked by inhibitors of CSE, CBS, and K ATP channels. In the retina, there is evidence that H 2 S can inhibit excitatory amino acid neurotransmission and can also protect this tissue from a wide variety of insults. Furthermore, exogenous application of H 2 S-releasing compounds was reported to increase aqueous humor outflow facility in an ex vivo model of the porcine ocular anterior segment and lowered intraocular pressure (IOP) in both normotensive and glaucomatous rabbits. Taken together, the finding that H 2 S-releasing compounds can lower IOP and can serve a neuroprotective role in the retina suggests that H 2 S prodrugs could be used as tools or therapeutic agents in diseases such as glaucoma

    Effect of hydrogen sulfide donors on intraocular pressure in rabbits

    No full text
    Purpose: In this study, we investigated the effect of a slow-releasing hydrogen sulfide (H2S) donor, GYY 4137, on intraocular pressure (IOP) in normotensive rabbits. Furthermore, we compared the IOP-lowering action of GYY 4137 with those elicited by other H2S-producing compounds, l-cysteine and ACS67 (a hybrid compound of latanoprost with an H2S-releasing moiety). Methods: IOP was measured in New Zealand normotensive male albino rabbits using a pneumatonometer (model 30 classic; Reichert Ophthalmic Instruments, Depew, NY). At 0 h, 50 μL of test compounds were applied topically to 1 eye of each animal, while the contralateral eye received the same quantity of vehicle (saline). IOP was measured hourly until baseline IOP readings were attained and animal eyes monitored for potential side effects (i.e., tearing, hyperemia). Results: GYY 4137 (0.1%-2%) produced a dose-dependent decrease in IOP reaching a maximum of 27.8% ± 3.14% (n = 5) after 6 h. Interestingly, a significant contralateral effect was observed in vehicle-treated controls eyes at all doses tested. l-cysteine (5%) and ACS67 (0.005%) also elicited a significant (P \u3c 0.01) decrease in IOP that achieved a maximum of 28.84% ± 1.53% (n = 5) and 23.27% ± 0.51% (n = 5), respectively, after 3 h. All 3 H2S-producing compounds also caused a significant contralateral effect in vehicle-treated control eyes. Conclusion: We conclude that GYY 4137 and other H2S-producing donors can reduce IOP in normotensive rabbits. However, the profile of IOP-lowering action of GYY 4137 was different from the other H2S donors affirming its ability to act as a slow-releasing gas donor

    Interaction between hydrogen sulfide, nitric oxide, and carbon monoxide pathways in the bovine isolated retina

    Get PDF
    Purpose: Nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are physiologically relevant gaseous neurotransmitters that are endogenously produced in mammalian tissues. In the present study, we investigated the possibility that NO and CO can regulate the endogenous levels of H2S in bovine isolated neural retina. Methods: Isolated bovine neural retina were homogenized and tissue homogenates were treated with a NO synthase inhibitor, NO donor, heme oxygenase-1 inhibitor, and/donor. H2S concentrations in bovine retinal homogenates were measured using a well-established colorimetric assay. Results: L-NAME (300 nM-500 μM) caused a concentration-dependent decrease in basal endogenous levels of H2S by 86.2%. On the other hand, SNP (10-300 μM) elicited a concentration-related increase in H2S levels from 18.3 nM/mg of protein to 65.7 nM/mg of protein. ZnPP-IX (300 nM-10 μM) caused a concentration-dependent increase in the endogenous production of H2S whereas hemin (300 nM-20 μM) attenuated the basal levels of H2S. Conclusion: We conclude that changes in the biosynthesis and availability of both NO and CO can interfere with the pathway/s involved in the production of H2S in the retina. The demonstrated ability of NO, CO and H2S to interact in the mammalian retina affirms a physiological/pharmacological role for these gaseous mediators in the eye

    Current trends in the pharmacotherapy of cataracts

    No full text
    Cataracts, one of the leading causes of preventable blindness worldwide, refers to lens degradation that is characterized by clouding, with consequent blurry vision. As life expectancies improve, the number of people affected with cataracts is predicted to increase worldwide, especially in low-income nations with limited access to surgery. Although cataract surgery is considered safe, it is associated with some complications such as retinal detachment, warranting a search for cheap, pharmacological alternatives to the management of this ocular disease. The lens is richly endowed with a complex system of non-enzymatic and enzymatic antioxidants which scavenge reactive oxygen species to preserve lens proteins. Depletion and/or failure in this primary antioxidant defense system contributes to the damage observed in lenticular molecules and their repair mechanisms, ultimately causing cataracts. Several attempts have been made to counteract experimentally induced cataract using in vitro, ex vivo, and in vivo techniques. The majority of the anti-cataract compounds tested, including plant extracts and naturally-occurring compounds, lies in their antioxidant and/or free radical scavenging and/or anti-inflammatory propensity. In addition to providing an overview of the pathophysiology of cataracts, this review focuses on the role of various categories of natural and synthetic compounds on experimentally-induced cataracts

    Regulation of [³H]d-aspartate release by the 5-F(2t)-isoprostane and its 5-epimer in isolated bovine retina.

    No full text
    International audienceWe have evidence that 15-F₂-isoprostanes (15-F₂-IsoPs) regulate excitatory neurotransmitter release in ocular tissues. Although 5-F₂-IsoPs are abundantly produced in mammals, their pharmacological actions on neurotransmitter release remain unknown. In the present study, we compared the effect of the 5-F₂-IsoP epimer pair, 5-F(2t)-IsoP (C5-OH in β-position) and 5-epi-5-F(2t)-IsoP (C5-OH in α-position), on K⁺-evoked [³H]D-aspartate release in isolated bovine retina. We further examined the role of prostanoid receptors on the inhibitory action of 5-epi-5-F(2t)-IsoP on [³H]D-aspartate overflow. Isolated bovine retina were prepared for studies of K⁺-evoked release of [³H]D-aspartate using the superfusion method. 5-epi-5-F(2t)-IsoP (0.01 nM to 1 μM), attenuated K⁺-evoked [³H]D-aspartate release in a concentration-dependent manner, with the inhibitory effect of 26.9% (P < 0.001; IC₂₅ = 0.2 μM) being achieved at 1 μM concentration. Its 5-(S)-OH-epimer, 5-F(2t)-IsoP (0.1 nM-1 μM), exhibited an inhibitory biphasic action, yielding a maximal response of 35.7% (P < 0.001) at 10 nM concentration of the drug (IC₂₅ value of 3 nM). Although the prostanoid-receptor antagonists, AH 6809 (10 μM; EP₁₋₃/DP) and BAY-u3405 (10 μM; DP/Tx) exhibited no effect on 5-epi-5-F(2t)-IsoP (10 nM-1 μM)-mediated inhibition, SC-19220 (1 μM; EP₁) completely reversed 5-epi-5-F(2t)-IsoP (0.1 μM and 1 μM)-induced attenuation of K⁺-evoked [³H]D-aspartate release. Similarly, both SC-51322 (10 μM; EP₁ and AH 23848 (1 μM; EP₄) reversed the inhibitory action elicited by 5-epi-5-F(2t)-IsoP (0.1 μM) on the neurotransmitter release. We conclude that the 5-F₂-IsoP epimer pair, 5-F(2t)-IsoP and 5-epi-5-F(2t)-IsoP, attenuate K⁺-induced [³H]D-aspartate release in isolated bovine retina presumably via prostanoid receptor dependent mechanisms. The trans-orientation of the allylic hydroxyl group at position C5 accounts for the apparent biphasic response exhibited by 5-F(2t)-IsoP on excitatory neurotransmitter release
    corecore