16 research outputs found
Contributions of chaperone/usher systems to cell binding, biofilm formation and Yersinia pestis virulence
Yersinia pestis genome sequencing projects have revealed six intact uncharacterized chaperone/
usher systems with the potential to play roles in plague pathogenesis. We cloned each locus and
expressed them in the Deltafim Escherichia coli strain AAEC185 to test the assembled Y. pestis
surface structures for various activities. Expression of each chaperone/usher locus gave rise to
specific novel fibrillar structures on the surface of E. coli. One locus, y0561-0563, was able to
mediate attachment to human epithelial cells (HEp-2) and human macrophages (THP-1) but not
mouse macrophages (RAW264.7), while several loci were able to facilitate E. coli biofilm
formation. When each chaperone/usher locus was deleted in Y. pestis, only deletion of the
previously described pH 6 antigen (Psa) chaperone/usher system resulted in decreased adhesion
and biofilm formation. Quantitative RT-PCR (qRT-PCR) revealed low expression levels for each
novel chaperone/usher system in vitro as well as in mouse tissues following intravenous infection.
However, a Y. pestis mutant in the chaperone/usher locus y1858-1862 was attenuated for
virulence in mice via the intravenous route of infection, suggesting that expression of this locus is,
at some stage, sufficient to affect the outcome of a plague infection. qRT-PCR experiments also
indicated that expression of the chaperone/usher-dependent capsule locus, caf1, was influenced
by oxygen availability and that the well-described chaperone/usher-dependent pilus, Psa, was
strongly induced in minimal medium even at 28 degrees C rather than 37 degrees C, a temperature previously
believed to be required for Psa expression. These data indicate several potential roles for the
novel chaperone/usher systems of Y. pestis in pathogenesis and infection-related functions such
as cell adhesion and biofilm formation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91950/1/2011 Microbiology - Contributions of chaperone usher systems to cell binding biofilm formation and Yersinia pestis virulence.pd
Expression during Host Infection and Localization of Yersinia pestis Autotransporter Proteins
Yersinia pestis CO92 has 12 open reading frames encoding putative conventional autotransporters (yaps), nine of which appear to produce functional proteins. Here, we demonstrate the ability of the Yap proteins to localize to the cell surface of both Escherichia coli and Yersinia pestis and show that a subset of these proteins undergoes processing by bacterial surface omptins to be released into the supernatant. Numerous autotransporters have been implicated in pathogenesis, suggesting a role for the Yaps as virulence factors in Y. pestis. Using the C57BL/6 mouse models of bubonic and pneumonic plague, we determined that all of these genes are transcribed in the lymph nodes during bubonic infection and in the lungs during pneumonic infection, suggesting a role for the Yaps during mammalian infection. In vitro transcription studies did not identify a particular environmental stimulus responsible for transcriptional induction. The primary sequences of the Yaps reveal little similarity to any characterized autotransporters; however, two of the genes are present in operons, suggesting that the proteins encoded in these operons may function together. Further work aims to elucidate the specific functions of the Yaps and clarify the contributions of these proteins to Y. pestis pathogenesis
RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague
The pathogenic species of Yersinia contain the transcriptional regulator RovA. In Yersinia pseudotuberculosis and Yersinia enterocolitica, RovA regulates expression of the invasion factor invasin (inv), which mediates translocation across the intestinal epithelium. A Y. enterocolitica rovA mutant has a significant decrease in virulence by LD(50) analysis and an altered rate of dissemination compared with either wild type or an inv mutant, suggesting that RovA regulates multiple virulence factors. Here, we show the involvement of RovA in the virulence of Yersinia pestis, which naturally lacks a functional inv gene. A Y. pestis ΔrovA mutant is attenuated ≈80-fold by LD(50) and is defective in dissemination/colonization of spleens and lungs after s.c. inoculation. However, the ΔrovA mutant is only slightly attenuated when given via an intranasal or i.p. route, indicating a more important role for RovA in bubonic plague than pneumonic plague or systemic infection. Microarray analysis was used to define the RovA regulon. The psa locus was among the most highly down-regulated loci in the ΔrovA mutant. A ΔpsaA mutant had a significant dissemination defect after s.c. infection but only slight attenuation by the pneumonic-disease model, closely mimicking the virulence defect seen with the ΔrovA mutant. DNA-binding studies revealed that RovA specifically interacts with the psaE and psaA promoter regions, indicating a direct role for RovA in regulating this locus. Thus, RovA appears to be a global transcription factor in Y. pestis and, through its regulatory influence on genes such as psaEFABC, contributes to the virulence of Y. pestis
Phosphorylated CpxR Restricts Production of the RovA Global Regulator in Yersinia pseudotuberculosis
Background: RovA is a global transcriptional regulator of gene expression in pathogenic Yersinia. RovA levels are kept in check by a sophisticated layering of distinct transcriptional and post-transcriptional regulatory mechanisms. In the enteropathogen Y. pseudotuberculosis, we have previously reported that the extracytoplasmic stress sensing CpxA-CpxR two-component regulatory system modulates rovA expression. Methodology/Principal Findings: In this study, we characterized CpxR phosphorylation (CpxR similar to P) in vitro, and determined that phosphorylation was necessary for CpxR to efficiently bind to the PCR-amplified upstream regulatory region of rovA. The precise CpxR similar to P binding site was mapped by a nuclease protection assay and directed mutagenesis confirmed that in vivo binding to the rovA promoter inhibits transcription. Reduced RovA production was most pronounced following CpxR, P accumulation in the Yersinia cytoplasm during chronic Cpx pathway activation and by the indiscriminate phosphodonor action of acetyl phosphate. Conclusions/Significance: Cpx pathway activation restricts levels of the RovA global regulator. The regulatory influence of CpxR similar to P must therefore extend well beyond periplasmic quality control in the Yersinia envelope, to include genes involved in environmental survival and pathogenicity
Evolution and Virulence Contributions of the Autotransporter Proteins YapJ and YapK of Yersinia pestis CO92 and Their Homologs in Y. pseudotuberculosis IP32953
Yersinia pestis, the causative agent of plague, evolved from the gastrointestinal pathogen Yersinia pseudotuberculosis. Both species have numerous type Va autotransporters, most of which appear to be highly conserved. In Y. pestis CO92, the autotransporter genes yapK and yapJ share a high level of sequence identity. By comparing yapK and yapJ to three homologous genes in Y. pseudotuberculosis IP32953 (YPTB0365, YPTB3285, and YPTB3286), we show that yapK is conserved in Y. pseudotuberculosis, while yapJ is unique to Y. pestis. All of these autotransporters exhibit >96% identity in the C terminus of the protein and identities ranging from 58 to 72% in their N termini. By extending this analysis to include homologous sequences from numerous Y. pestis and Y. pseudotuberculosis strains, we determined that these autotransporters cluster into a YapK (YPTB3285) class and a YapJ (YPTB3286) class. The YPTB3286-like gene of most Y. pestis strains appears to be inactivated, perhaps in favor of maintaining yapJ. Since autotransporters are important for virulence in many bacterial pathogens, including Y. pestis, any change in autotransporter content should be considered for its impact on virulence. Using established mouse models of Y. pestis infection, we demonstrated that despite the high level of sequence identity, yapK is distinct from yapJ in its contribution to disseminated Y. pestis infection. In addition, a mutant lacking both of these genes exhibits an additive attenuation, suggesting nonredundant roles for yapJ and yapK in systemic Y. pestis infection. However, the deletion of the homologous genes in Y. pseudotuberculosis does not seem to impact the virulence of this organism in orogastric or systemic infection models