5,449 research outputs found

    Development and application of a sensitive, high precision weighing lysimeter for use in greenhouses

    Get PDF
    A high precision weighing lysimeter for measuring evapotranspiration in greenhouses was developed. The instrument has a measurement of sensitivity of one part in 106, that is one order of magnitude better than any other so far described in the literature. With it, evaporation rates in a greenhouse, even at night, can be measured on a one minute time scale. Development and construction of the instrument are described and measurements of the transpiration of a tomato crop in a greenhouse are used to demonstrate its capabilities

    Strain-induced kinetics of intergrain defects as the mechanism of slow dynamics in the nonlinear resonant response of humid sandstone bars

    Full text link
    A closed-form description is proposed to explain nonlinear and slow dynamics effects exhibited by sandstone bars in longitudinal resonance experiments. Along with the fast subsystem of longitudinal nonlinear displacements we examine the strain-dependent slow subsystem of broken intergrain and interlamina cohesive bonds. We show that even the simplest but phenomenologically correct modelling of their mutual feedback elucidates the main experimental findings typical for forced longitudinal oscillations of sandstone bars, namely, (i) hysteretic behavior of a resonance curve on both its up- and down-slopes, (ii) linear softening of resonant frequency with increase of driving level, and (iii) gradual recovery (increase) of resonant frequency at low dynamical strains after the sample was conditioned by high strains. In order to reproduce the highly nonlinear elastic features of sandstone grained structure a realistic non-perturbative form of strain potential energy was adopted. In our theory slow dynamics associated with the experimentally observed memory of peak strain history is attributed to strain-induced kinetic changes in concentration of ruptured inter-grain and inter-lamina cohesive bonds causing a net hysteretic effect on the elastic Young's modulus. Finally, we explain how enhancement of hysteretic phenomena originates from an increase in equilibrium concentration of ruptured cohesive bonds that are due to water saturation.Comment: 5 pages, 3 figure

    2+2=5: A Collective Inspiration

    Get PDF
    corecore