75 research outputs found
Sexual dimorphism in the lasting effects of moderate caloric restriction during gestation on energy homeostasis in rats is related with fetal programming of insulin and leptin resistance
<p>Abstract</p> <p>Aim</p> <p>We aimed to characterize the lasting effect of moderate caloric restriction during early pregnancy on offspring energy homeostasis, by focusing on the effects on food intake and body weight as well as on the insulin and leptin systems.</p> <p>Methods</p> <p>Male and female offspring of 20% caloric restricted dams (from 1 to 12 days of pregnancy) (CR) and from control dams were studied. These animals were fed after weaning with a normal-fat (NF) diet until the age of 4 months, and then moved to a high-fat (HF) diet. Blood parameters were measured under fed and 14-h fasting conditions at different ages (2, 4 and 5 months). Food preferences were also assessed in adult animals.</p> <p>Results</p> <p>Accumulated caloric intake from weaning to the age of 5 months was higher in CR animals compared with their controls, and this resulted in higher body weight in adulthood in males, but not in females. Both male and female CR animals already showed higher insulin levels at the age of 2 months, under fed conditions, and higher HOMA-IR from the age of 4 months, compared with their controls. CR male animals, but not females, displayed higher preference for fat-rich food than their controls in adulthood and higher circulating leptin levels when they were under HF diet.</p> <p>Conclusion</p> <p>It is suggested that hyperinsulinemia may play a role in the etiology of hyperphagia in the offspring of caloric restricted animals during gestation, with different outcomes on body weight depending on the gender, which could be associated with different programming effects on later leptin resistance.</p
Moderate Caloric Restriction during Gestation in Rats Alters Adipose Tissue Sympathetic Innervation and Later Adiposity in Offspring
Maternal prenatal undernutrition predisposes offspring to higher adiposity in adulthood. Mechanisms involved in these programming effects, apart from those described in central nervous system development, have not been established. Here we aimed to evaluate whether moderate caloric restriction during early pregnancy in rats affects white adipose tissue (WAT) sympathetic innervation in the offspring, and its relationship with adiposity development. For this purpose, inguinal and retroperitoneal WAT (iWAT and rpWAT, respectively) were analyzed in male and female offspring of control and 20% caloric-restricted (from 1–12 d of pregnancy) (CR) dams. Body weight (BW), the weight, DNA-content, morphological features and the immunoreactive tyrosine hydroxylase and Neuropeptide Y area (TH+ and NPY+ respectively, performed by immunohistochemistry) of both fat depots, were studied at 25 d and 6 m of age, the latter after 2 m exposure to high fat diet. At 6 m of life, CR males but not females, exhibited greater BW, and greater weight and total DNA-content in iWAT, without changes in adipocytes size, suggesting the development of hyperplasia in this depot. However, in rpWAT, CR males but not females, showed larger adipocyte diameter, with no changes in DNA-content, suggesting the development of hypertrophy. These parameters were not different between control and CR animals at the age of 25 d. In iWAT, both at 25 d and 6 m, CR males but not females, showed lower TH+ and NPY+, suggesting lower sympathetic innervation in CR males compared to control males. In rpWAT, at 6 m but not at 25 d, CR males but not females, showed lower TH+ and NPY+. Thus, the effects of caloric restriction during gestation on later adiposity and on the differences in the adult phenotype between internal and subcutaneous fat depots in the male offspring may be associated in part with specific alterations in sympathetic innervation, which may impact on WAT architecture
Hesperidin and Capsaicin, But Not The Combination, Prevent Hepatic Steatosis and Other Metabolic Syndrome-Related Alterations in Western Diet-Fed Rats
We aimed to assess the potential effects of hesperidin and capsaicin, independently and in combination, to prevent the development of obesity and its related metabolic alterations in rats fed an obesogenic diet. Three-month-old male Wistar rats were divided into 5 groups: Control (animals fed a standard diet), WD (animals fed a high fat/sucrose (western) diet), HESP (animals fed a western diet + hesperidin (100 mg/kg/day)), CAP (animals fed a western diet + capsaicin (4 mg/kg/day)), and HESP + CAP (animals fed a western diet + hesperidin (100 mg/kg/day) + capsaicin (4 mg/kg/day)). Hesperidin and capsaicin were administered by gavage. Capsaicin decreased body fat gain and prevented insulin resistance, whereas hesperidin showed little effect on body fat gain and no apparent effects on insulin resistance. No additive effects were observed with the combination. Capsaicin and hesperidin, separately, improved blood lipid profile, diminished hepatic lipid accumulation, and prevented non-alcoholic steatohepatitis in western diet-fed rats, but the combination showed lower effects. Hesperidin alone, and to a lesser extent capsaicin or the combination, displayed hypotensive effects in western diet-fed rats. In conclusion, capsaicin and hesperidin, separately, exhibit health beneficial effects on metabolic syndrome-related alterations in western diet-fed rats, but the effects are mitigated with the combination.This work was supported by the Spanish Government (AGL2015-67019-P), and the Instituto de Salud Carlos III, Centro de Investigacion Biomedica en Red Fisiopatologia de la Obesidad y Nutricion, CIBERobn. Laboratory of Molecular Biology, Nutrition and Biotechnology is a member of the European Research Network of Excellence NuGO (The European Nutrigenomics Organization, EU Contract: no. FP6-506360). A. Mosqueda-Solis is a recipient of a doctoral fellowship from the CONACYT (Mexico)
Enhancing hepatic fatty acid oxidation as a strategy for reversing metabolic disorders programmed by maternal undernutrition during gestation
Background/Aims: Moderate maternal calorie-restriction during gestation programmes offspring for a major propensity to develop metabolic alterations in adulthood. We aimed to assess whether increased hepatic fatty-acid oxidation (FAO), at early ages, by gene transfer of Cpt1am (active mutant of carnitine palmitoyltransferase-1a), may be a strategy for reversing metabolic disturbances associated to maternal calorie-restriction during gestation in rats. Methods: AAV-Gfp (control) and AAV-Cpt1am vectors were administered by tail vein injection in 18-day-old control-pups and the offspring of 20% calorie-restricted rats during gestation (CR). After weaning, animals were fed with normal-fat diet. At the age of 4 months, they were moved to HF-diet and sacrificed at the age of 6 months to collect tissues. Locomotive activity, energy expenditure and blood pressure were measured. Results: Under HF-diet, CR-animals showed higher HOMA-IR, adipocyte diameter and hepatic triglyceride accumulation than controls; these alterations were reverted in Cpt1am-injected animals. In liver, this treatment ameliorated inflammatory state, decreased expression of lipogenesis-related genes and partially restored the decreased expression of leptin-receptor occurring in CR-animals. Treatment also reverted the decreased energy expenditure and the increased blood pressure of CR-animals. Conclusion: Increasing hepatic FAO through AAV-Cpt1am injection at juvenile ages prevents some metabolic disorders associated to gestational maternal calorie-restriction
Effects of trans-10, cis-12 conjugated linoleic acid on the expression of uncoupling proteins in hamsters fed an atherogenic diet
It is known that conjugated linoleic acid (CLA) feeding decreases body adiposity but the mechanisms involved are not clear. The aim of this study was to analyse whether alterations in uncoupling protein (UCP) expression in white and brown adipose tissues (WAT and BAT, respectively) and in skeletal muscle may be responsible for the effect of trans-10, cis-12 CLA on the size of body fat depots in hamsters. Animals were divided into three groups and fed an atherogenic diet with different amounts of trans-10, cis-12 CLA (0 control, 0·5, or 1 g/100 g diet) for 6 weeks. CLA feeding reduced adipose depot weights, but had no effect on body weight. Leptin mRNA expression decreased in both subcutaneous and perirenal WAT depots, in accordance with lower adiposity, whereas resistin mRNA expression was not changed. Animals fed CLA had lower UCP1 mRNA levels in BAT (both doses of CLA) and in perirenal WAT (the low dose), and lower UCP3 mRNA levels in subcutaneous WAT (the high dose). UCP2 mRNA expression in WAT was not significantly affected by CLA feeding. Animals fed the high dose of CLA showed increased UCP3 and carnitine palmitoyl transferase-I (CPT-I) mRNA expression levels in skeletal muscle. In summary, induction of UCP1 or UCP2 in WAT and BAT is not likely to be responsible for the fat-reduction action of CLA, but the increased expression of UCP3 in skeletal muscle, together with a higher expression of CPT-I, may explain the previously reported effects of dietary CLA in lowering adiposity and increasing fatty acid oxidation by skeletal muscle
Blood cell transcript levels in 5-year-old children as potential markers of breastfeeding effects in those small for gestational age at birth
BACKGROUND: Nutrition of the newborn during the early postnatal period seems to be of capital importance and there is clinical evidence showing the protective effect of breastfeeding compared with formula feeding on childhood obesity and its comorbidities. Infants born small for gestation age may be more sensitive to the type of feeding during lactation. Here, we aimed to analyze the impact of birth weight and the type of infant feeding on the expression levels in peripheral blood cells of selected candidate genes involved in energy homeostasis in 5-year-old children, to find out potential early biomarkers of metabolic programming effects during this period of metabolic plasticity. METHODS: Forty subjects were recruited at birth and divided in four groups according to birth weight (adequate or small for gestational age) and type of infant feeding (breastfeeding or formula feeding). They were followed from birth to the age of 5 years. RESULTS: At 5 years, no significant differences regarding anthropometric parameters were found between groups, and all children had normal biochemical values. Expression levels of UCP2 and MC4R in peripheral blood cells were lower and higher, respectively, in formula feeding children compared with breastfeeding ones (P = 0.002 and P = 0.064, two-way ANOVA). Differences were more marked and significant by Student's t test in small for gestation age children (P < 0.001 and P = 0.017, respectively). Transcript levels of FASN and FTO in peripheral blood cells were also different according to the type of infant feeding, but only in small for gestation age children. CONCLUSIONS: Altogether, these results suggest that small for gestation age infants are more sensitive to the type of feeding during lactation, and transcript levels of particular genes in peripheral blood cells, especially the MC4R/UCP2 mRNA ratio, may precisely reflect these effects in the absence of clear differences in phenotypic traits
Moderate calorie restriction during gestation programs offspring for lower BAT thermogenic capacity driven by thyroid and sympathetic signaling
BACKGROUND: Maternal calorie restriction during pregnancy programs offspring for later overweight and metabolic disturbances.Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis and has recently emerged as a very likely target for human obesity therapy. OBJECTIVE: Here we aimed to assess whether the detrimental effects of undernutrition during gestation could be related to impaired thermogenic capacity in BAT and to investigate the potential mechanisms involved. METHODS: Offspring of control and 20% calorie-restricted rats (days 1 12 of pregnancy) (CR) were studied at the age of 25 days.Protein levels of uncoupling protein 1 (UCP1) and tyrosine hydroxylase (TyrOH); mRNA levels of lipoprotein lipase (LPL), carnitinepalmitoyltransferase 1 (CPT1) and deiodinase iodothyronine type II (DIO2) in BAT; and blood parameters including thyroid hormones, were determined. The response to 24-h cold exposure was also studied by measuring body temperature changes over time, and final BAT UCP1 levels. RESULTS: Compared with controls, CR animals displayed in BAT lower UCP1 and TyrOH protein levels and lower LPL and CPT1 mRNA levels; they also showed lower triiodothyronine (T3) plasma levels. CR males, but not females, revealed lower DIO2 mRNA levels than controls. When exposed to cold, CR rats experienced a transient decline in body temperature, but the values were reestablished after 24 h, despite having lower UCP1 levels than controls. CONCLUSIONS: These results suggest that BAT thermogenic capacity is diminished in CR animals, involving impaired BAT sympathetic innervation and thyroid hormone signaling. These alterations make animals more sensitive to cold and may contribute to long-term outcomes of gestational calorie restriction in promoting obesity and related metabolic alterations
Clinical and Pathological Characterization of Lynch-Like Syndrome
Background & aims: Lynch syndrome is characterized by DNA mismatch repair (MMR) deficiency. Some patients with suspected Lynch syndrome have DNA MMR deficiencies but no detectable mutations in genes that encode MMR proteins-this is called Lynch-like syndrome (LLS). There is no consensus on management of patients with LLS. We collected data from a large series of patients with LLS to identify clinical and pathology features.
Methods: We collected data from a nationwide-registry of patients with colorectal cancer (CRC) in Spain. We identified patients whose colorectal tumors had loss of MSH2, MSH6, PMS2, or MLH1 (based on immunohistochemistry), without the mutation encoding V600E in BRAF (detected by real-time PCR), and/or no methylation at MLH1 (determined by methylation-specific multiplex ligation-dependent probe amplification), and no pathogenic mutations in MMR genes, BRAF, or EPCAM (determined by DNA sequencing). These patients were considered to have LLS. We collected data on demographic, clinical, and pathology features and family history of neoplasms. The χ2 test was used to analyze the association between qualitative variables, followed by the Fisher exact test and the Student t test or the Mann-Whitney test for quantitative variables.
Results: We identified 160 patients with LLS; their mean age at diagnosis of CRC was 55 years and 66 patients were female (41%). The Amsterdam I and II criteria for Lynch syndrome were fulfilled by 11% of cases and the revised Bethesda guideline criteria by 65% of cases. Of the patients with LLS, 24% were identified in universal screening. There were no proportional differences in sex, indication for colonoscopy, immunohistochemistry, pathology findings, or personal history of CRC or other Lynch syndrome-related tumors between patients who met the Amsterdam and/or Bethesda criteria for Lynch syndrome and patients identified in universal screening for Lynch syndrome, without a family history of CRC.
Conclusions: Patients with LLS have homogeneous clinical, demographic, and pathology characteristics, regardless of family history of CRC
- …