2,060 research outputs found

    Editorial to the special issue “lipidomics and neurodegenerative diseases”

    Get PDF
    The contribution of dysregulation of lipid signaling and metabolism to neurodegenerative diseases including Alzheimer’s and Parkinson’s is the focus of this special issue. Here, the matter of three reviews and one research article is summarized

    Physical activities and enjoyment during the lockdown: Effect of home-based supervised training among children and adolescents

    Get PDF
    Enjoyment during physical and sport activities is an essential and well recognized component that has been also related to motor ability in children. During the period of home confinement due to Covid-19 lockdown, the Italian version of the Physical Activity Enjoyment Scale (PACES-It) was used to evaluate the level of enjoyment in physical and sports activities. The beginning stem of the questionnaire was modified by asking subjects “During the lockdown, when I am physically active
”. Data were collected on a sample of 140 among children and adolescents (60 aged 6-11 and 80 aged 12-15, 66% males and 34% females). About 90% of subjects followed online school classes and 83% also received indications from their Sports Associations about physical home-exercises and other forms of guided distance learning. Results from PACES showed that subjects liked the home physical activities with a mean value of 65.2 11.8 with higher values from those who received online support from their regular instructors; moreover, higher values from PACES were obtained by middle school children respect to primary school children and high school adolescents. Despite the mandatory confinement, a positive feedback regarding the enjoyment was reported by children and adolescents for the home distance modality

    Interpreting the role of the striatum during multiple phases of motor learning

    Get PDF
    The synaptic pathways in the striatum are central to basal ganglia functions including motor control, learning and organization, action selection, acquisition of motor skills, cognitive function, and emotion. Here, we review the role of the striatum and its connections in motor learning and performance. The development of new techniques to record neuronal activity and animal models of motor disorders using neurotoxin, pharmacological, and genetic manipulations are revealing pathways that underlie motor performance and motor learning, as well as how they are altered by pathophysiological mechanisms. We discuss approaches that can be used to analyze complex motor skills, particularly in rodents, and identify specific questions central to understanding how striatal circuits mediate motor learning

    Assay of riboflavin in sample wines by capillary zone electrophoresis and laser-induced fluorescence detection

    Get PDF
    To routinely assay the concentration of riboflavin (RF) in wines, a rapid and sensitive method was developed and evaluated. The method is based on a simple sample preparation, capillary zone electrophoretic separation and laser-induced fluorescence detection (CZE-LIF). Sample-preparation required only dilution and filtration. Under optimized conditions, the limit of detection of riboflavin was 0.5 mug/L, using a hydrodynamic sample introduction of 10 s at 54 mbar. The method was fully validated: the recovery of RF in wines was >95%. The concentrations of RF within the three sample types of Italian wines investigated here ranged from 69 to 151 mug/L with a mean value(+/-SD) of 112 +/- 25 mug/L, from 74 to 193 mug/L with a mean value of 115 +/- 45,ug/L, and from 156 to 292 mug/L with a mean value of 226 +/- 40 mug/L, for white, rose and red wines, respectively. Such an accurate and highly sensitive CZE-LIF method represents a powerful improvement over previous methods in terms of sensitivity, simplicity, and efficiency. It is well suited to satisfy the demands for accurate and sensitive detection with minimal sample preparation and cleanup

    Synthesis and matrix properties of α-cyano-5-phenyl-2,4-pentadienic acid (CPPA) for intact proteins analysis by matrix-assisted laser desorption/ionization mass spectrometry

    Get PDF
    The effectiveness of a synthesized matrix, α-cyano-5-phenyl-2,4-pentadienic acid (CPPA), for protein analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) in complex samples such as foodstuff and bacterial extracts, is demonstrated. Ultraviolet (UV) absorption along with laser desorption/ionization mass spectrometry (LDI-MS) experiments were systematically conducted in positive ion mode under standard Nd:YLF laser excitation with the aim of characterizing the matrix in terms of wavelength absorption and proton affinity. Besides, the results for standard proteins revealed that CPPA significantly enhanced the protein signals, reduced the spot-to-spot variability and increased the spot homogeneity. The CPPA matrix was successful employed to investigate intact microorganisms, milk and seed extracts for protein profiling. Compared to conventional matrices such as sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid (CHCA) and 4-chloro-α-cyanocinnamic acid (CClCA), CPPA exhibited better signal-to-noise (S/N) ratios and a uniform response for most examined proteins occurring in milk, hazelnut and in intact bacterial cells of E. coli. These findings not only provide a reactive proton transfer MALDI matrix with excellent reproducibility and sensitivity, but also contribute to extending the battery of useful matrices for intact protein analysis

    Mass spectrometric evidence for collisionally induced removal of H2 from monoanions of 10B nido-carborane derivatives investigated by electrospray ionization quadrupole linear ion trap and Fourier transform ion cyclotron resonance mass spectrometry

    Get PDF
    Some newly synthesized 10B nido-carborane derivatives, i.e., 7,8-dicarba-nido-undecaborane monoanions ([7-Me-8-R-C2B9H10]-K+, R = H, butyl, hexyl, octyl and decyl), have been fully characterised and examined by electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry with liquid chromatographic separation (LC/ESI-FTICR-MS). These boron-containing compounds exhibit abundant molecular ions ([M]−) at m/z 140.22631 [CB9H14]−, m/z 196.28883 [CB9H22]−, m/z 224.32032 [CB9H26]−, m/z 252.35133 [CB9H30]− and m/z 280.38354 [CB9H34]− at the normal tube lens voltage setting of −90 V, which was an instrumental parameter value selected in the tuning operation. Additional [M–nH2]− (n = 1−4) ions were observed in the mass spectra when higher tube lens voltages were applied, i.e., −140 V. High-resolution FTICR-MS data revealed the accurate masses of fragment ions, bearing either an even or an odd number of electrons. Collision-induced dissociation of the [M–nH2]− ions (n = 0–4) in the quadrupole linear ion trap (LTQ) analyzer confirmed the loss of hydrogen molecules from the molecular ions. It is suggested that the loss of H2 molecules from the alkyl chain is a consequence of the stabilization effect of the nido-carborane charged polyhedral skeleton

    Lipidomics of the edible brown alga wakame (Undaria pinnatifida) by liquid chromatography coupled to electrospray ionization and tandem mass spectrometry

    Get PDF
    The lipidome of a brown seaweed commonly known as wakame (Undaria pinnatifida), which is grown and consumed around the world, including Western countries, as a healthy nutraceutical food or supplement, was here extensively examined. The study was focused on the characterization of phospholipids (PL) and glycolipids (GL) by liquid chromatography (LC), either hydrophilic interaction LC (HILIC) or reversed-phase LC (RPLC), coupled to electrospray ionization (ESI) and mass spectrometry (MS), operated both in high and in low-resolution mode. Through the acquisition of single (MS) and tandem (MS/MS) mass spectra more than 200 PL and GL of U. pinnatifida extracts were characterized in terms of lipid class, fatty acyl (FA) chain composition (length and number of unsaturations), and regiochemistry, namely 16 SQDG, 6 SQMG, 12 DGDG, 5 DGMG, 29 PG, 8 LPG, 19 PI, 14 PA, 19 PE, 8 PE, 38 PC, and 27 LPC. The FA (C16:0) was the most abundant saturated acyl chain, whereas the monounsaturated C18:1 and the polyunsaturated C18:2 and C20:4 chains were the prevailing ones. Odd-numbered acyl chains, i.e., C15:0, C17:0, C19:0, and C19:1, were also recognized. While SQDG exhibited the longest and most unsaturated acyl chains, C18:1, C18:2, and C18:3, in the sn-1 position of glycerol, they were preferentially located in the sn-2 position in the case of PL. The developed analytical approach might pave the way to extend lipidomic investigations also for other edible marine algae, thus emphasizing their potential role as a source of bioactive lipids

    Self-Powered Edible Defrosting Sensor

    Get PDF
    Improper freezing of food causes food waste and negatively impacts the environment. In this work, we propose a device that can detect defrosting events by coupling a temperature-activated galvanic cell with an ionochromic cell, which is activated by the release of ions during current flow. Both the components of the sensor are fabricated through simple and low-energy-consuming procedures from edible materials. The galvanic cell operates with an aqueous electrolyte solution, producing current only at temperatures above the freezing point of the solution. The ionochromic cell exploits the current generated during the defrosting to release tin ions, which form complexes with natural dyes, causing the color change. Therefore, this sensor provides information about defrosting events. The temperature at which the sensor reacts can be tuned between 0 and -50 °C. The device can thus be flexibly used in the supply chain: as a sensor, it can measure the length of exposure to above-the-threshold temperatures, while as a detector, it can provide a signal that there was exposure to above-the-threshold temperatures. Such a device can ensure that frozen food is handled correctly and is safe for consumption. As a sensor, it could be used by the workers in the supply chain, while as a detector, it could be useful for end consumers, ensuring that the food was properly frozen during the whole supply chain

    The impact of fluid loss and carbohydrate consumption during exercise, on young cyclists’ fatigue perception in relation to training load level

    Get PDF
    High-level young athletes need to face a wide spectrum of stressors on their journey to Ă©lite categories. The aims of the present study are (i) to evaluate session rate of perceived exertion (sRPE) at different training impulse (TRIMP) categories and the correlations between these two variables and, (ii) evaluate the correlations between sRPE, fluid loss, and carbohydrate consumption during exercise. Data on Edward’s TRIMP, sRPE, body mass loss pre-and post-exercise (∆), and carbohydrate consumption (CHO/h) during exercise have been acquired from eight male junior cyclists during a competitive season. One-way ANOVA and correlation analysis with linear regression have been performed on acquired data. sRPE resulted in a significant difference in the three TRIMP categories (p < 0.001). sRPE resulted in being very largely positively associated with TRIMP values (p < 0.001; R = 0.71). ∆ as well as CHO/h was largely negatively related with sRPE in all TRIMP categories (p < 0.001). The results confirmed the role of fluid balance and carbohydrate consumption on the perception of fatigue and fatigue accumulation dynamics independently from the training load. Young athletes’ training load monitoring and nutritional-hydration support represent important aspects in athlete’s exercise-induced fatigue management
    • 

    corecore