119 research outputs found
Heavy Quarkonium in a weakly-coupled quark-gluon plasma below the melting temperature
We calculate the heavy quarkonium energy levels and decay widths in a
quark-gluon plasma, whose temperature T and screening mass m_D satisfy the
hierarchy m alpha_s >> T >> m alpha_s^2 >> m_D (m being the heavy-quark mass),
at order m alpha_s^5. We first sequentially integrate out the scales m, m
alpha_s and T, and, next, we carry out the calculations in the resulting
effective theory using techniques of integration by regions. A collinear region
is identified, which contributes at this order. We also discuss the
implications of our results concerning heavy quarkonium suppression in heavy
ion collisions.Comment: 25 pages, 2 figure
Effective Field Theories for Heavy Quarkonium
We briefly review how nonrelativistic effective field theories give us a
definition of the QCD potentials and a coherent field theory derived quantum
mechanical scheme to calculate the properties of bound states made by two or
more heavy quarks. In this framework heavy quarkonium properties depend only on
the QCD parameters (quark masses and \als) and nonpotential corrections are
systematically accounted for. The relation between the form of the
nonperturbative potentials and the low energy QCD dynamics is also discussed.Comment: Invited Plenary talk at The 20th European Conference on Few-Body
Problems in Physics. September 10-14 2007. Pisa, Italy. To be published on
Few-Body System
Ecological equivalence: a realistic assumption for niche theory as a testable alternative to neutral theory
Hubbell's 2001 neutral theory unifies biodiversity and biogeography by modelling steady-state distributions of species richness and abundances across spatio-temporal scales. Accurate predictions have issued from its core premise that all species have identical vital rates. Yet no ecologist believes that species are identical in reality. Here I explain this paradox in terms of the ecological equivalence that species must achieve at their coexistence equilibrium, defined by zero net fitness for all regardless of intrinsic differences between them. I show that the distinction of realised from intrinsic vital rates is crucial to evaluating community resilience. An analysis of competitive interactions reveals how zero-sum patterns of abundance emerge for species with contrasting life-history traits as for identical species. I develop a stochastic model to simulate community assembly from a random drift of invasions sustaining the dynamics of recruitment following deaths and extinctions. Species are allocated identical intrinsic vital rates for neutral dynamics, or random intrinsic vital rates and competitive abilities for niche dynamics either on a continuous scale or between dominant-fugitive extremes. Resulting communities have steady-state distributions of the same type for more or less extremely differentiated species as for identical species. All produce negatively skewed log-normal distributions of species abundance, zero-sum relationships of total abundance to area, and Arrhenius relationships of species to area. Intrinsically identical species nevertheless support fewer total individuals, because their densities impact as strongly on each other as on themselves. Truly neutral communities have measurably lower abundance/area and higher species/abundance ratios. Neutral scenarios can be parameterized as null hypotheses for testing competitive release, which is a sure signal of niche dynamics. Ignoring the true strength of interactions between and within species risks a substantial misrepresentation of community resilience to habitat los
Thermal width and gluo-dissociation of quarkonium in pNRQCD
The thermal width of heavy-quarkonium bound states in a quark-gluon plasma
has been recently derived in an effective field theory approach. Two phenomena
contribute to the width: the Landau damping phenomenon and the break-up of a
colour-singlet bound state into a colour-octet heavy quark-antiquark pair by
absorption of a thermal gluon. In the paper, we investigate the relation
between the singlet-to-octet thermal break-up and the so-called
gluo-dissociation, a mechanism for quarkonium dissociation widely used in
phenomenological approaches. The gluo-dissociation thermal width is obtained by
convoluting the gluon thermal distribution with the cross section of a gluon
and a 1S quarkonium state to a colour octet quark-antiquark state in vacuum, a
cross section that at leading order, but neglecting colour-octet effects, was
computed long ago by Bhanot and Peskin. We will, first, show that the effective
field theory framework provides a natural derivation of the gluo-dissociation
factorization formula at leading order, which is, indeed, the singlet-to-octet
thermal break-up expression. Second, the singlet-to-octet thermal break-up
expression will allow us to improve the Bhanot--Peskin cross section by
including the contribution of the octet potential, which amounts to include
final-state interactions between the heavy quark and antiquark. Finally, we
will quantify the effects due to final-state interactions on the
gluo-dissociation cross section and on the quarkonium thermal width.Comment: 17 pages, 6 figure
The Impact of Global Warming and Anoxia on Marine Benthic Community Dynamics: an Example from the Toarcian (Early Jurassic)
The Pliensbachian-Toarcian (Early Jurassic) fossil record is an archive of natural data of benthic community response to global warming and marine long-term hypoxia and anoxia. In the early Toarcian mean temperatures increased by the same order of magnitude as that predicted for the near future; laminated, organic-rich, black shales were deposited in many shallow water epicontinental basins; and a biotic crisis occurred in the marine realm, with the extinction of approximately 5% of families and 26% of genera. High-resolution quantitative abundance data of benthic invertebrates were collected from the Cleveland Basin (North Yorkshire, UK), and analysed with multivariate statistical methods to detect how the fauna responded to environmental changes during the early Toarcian. Twelve biofacies were identified. Their changes through time closely resemble the pattern of faunal degradation and recovery observed in modern habitats affected by anoxia. All four successional stages of community structure recorded in modern studies are recognised in the fossil data (i.e. Stage III: climax; II: transitional; I: pioneer; 0: highly disturbed). Two main faunal turnover events occurred: (i) at the onset of anoxia, with the extinction of most benthic species and the survival of a few adapted to thrive in low-oxygen conditions (Stages I to 0) and (ii) in the recovery, when newly evolved species colonized the re-oxygenated soft sediments and the path of recovery did not retrace of pattern of ecological degradation (Stages I to II). The ordination of samples coupled with sedimentological and palaeotemperature proxy data indicate that the onset of anoxia and the extinction horizon coincide with both a rise in temperature and sea level. Our study of how faunal associations co-vary with long and short term sea level and temperature changes has implications for predicting the long-term effects of âdead zonesâ in modern oceans
Light Stop Decay in the MSSM with Minimal Flavour Violation
In supersymmetric scenarios with a light stop particle and a
small mass difference to the lightest supersymmetric particle (LSP) assumed to
be the lightest neutralino, the flavour changing neutral current decay
can be the dominant decay channel and can
exceed the four-body stop decay for certain parameter values. In the framework
of Minimal Flavour Violation (MFV) this decay is CKM-suppressed, thus inducing
long stop lifetimes. Stop decay length measurements at the LHC can then be
exploited to test models with minimal flavour breaking through Standard Model
Yukawa couplings. The decay width has been given some time ago by an
approximate formula, which takes into account the leading logarithms of the MFV
scale. In this paper we calculate the exact one-loop decay width in the
framework of MFV. The comparison with the approximate result exhibits
deviations of the order of 10% for large MFV scales due to the neglected
non-logarithmic terms in the approximate decay formula. The difference in the
branching ratios is negligible. The large logarithms have to be resummed. The
resummation is performed by the solution of the renormalization group
equations. The comparison of the exact one-loop result and the tree level
flavour changing neutral current decay, which incorporates the resummed
logarithms, demonstrates that the resummation effects are important and should
be taken into account.Comment: 29 page
Threshold production of unstable top
We develop a systematic approach to describe the finite lifetime effects in
the threshold production of top quark-antiquark pairs. It is based on the
nonrelativistic effective field theory with an additional scale rho^(1/2) m_t
characterizing the dynamics of the top-quark decay, which involves a new
expansion parameter rho=1-m_W/m_t. Our method naturally resolves the problem of
spurious divergences in the analysis of the unstable top production. Within
this framework we compute the next-to-leading nonresonant contribution to the
total cross section of the top quark-antiquark threshold production in
electron-positron annihilation through high-order expansion in rho and confirm
the recently obtained result. We extend the analysis to the
next-to-next-to-leading O(alpha_s) nonresonant contribution which is derived in
the leading order in rho. The dominant nonresonant contribution to the
top-antitop threshold production in hadronic collisions is also obtained.Comment: 20 pages, 7 figures; v2: added a section on invariant mass cuts and
one reference, minor changes in Introduction, results unchanged, matches
published versio
Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory
This article is meant as a summary and introduction to the ideas of effective
field theory as applied to gravitational systems.
Contents:
1. Introduction
2. Effective Field Theories
3. Low-Energy Quantum Gravity
4. Explicit Quantum Calculations
5. ConclusionsComment: 56 pages, 2 figures, JHEP style, Invited review to appear in Living
Reviews of Relativit
The spin-orbit potential and Poincar\'e invariance in finite temperature pNRQCD
Heavy quarkonium at finite temperature has been the subject of intense
theoretical studies, for it provides a potentially clean probe of the
quark-gluon plasma. Recent studies have made use of effective field theories to
exploit in a systematic manner the hierarchy of energy scales that characterize
the system. In the case of a quarkonium in a medium whose temperature is
smaller than the typical momentum transfer in the bound state but larger than
its energy, the suitable effective field theory is pNRQCD_HTL, where degrees of
freedom with energy or momentum larger than the binding energy have been
integrated out. Thermal effects are expected to break Poincar\'e invariance,
which, at zero temperature, manifests itself in a set of exact relations
between the matching coefficients of the effective field theory. In the paper,
we evaluate the leading-order thermal corrections to the spin-orbit potentials
of pNRQCD_HTL and show that Poincar\'e invariance is indeed violated.Comment: 17 page, 4 figures. Version published on JHE
Comparative Geno-Plasticity Analysis of Mycoplasma bovis HB0801 (Chinese Isolate)
Mycoplasma bovis pneumonia in cattle has been epidemic in China since 2008. To investigate M. bovis pathogenesis, we completed genome sequencing of strain HB0801 isolated from a lesioned bovine lung from Hubei, China. The genomic plasticity was determined by comparing HB0801 with M. bovis strain ATCCÂŽ 25523â˘/PG45 from cow mastitis milk, Chinese strain Hubei-1 from lesioned lung tissue, and 16 other Mycoplasmas species. Compared to PG45, the genome size of HB0801 was reduced by 11.7 kb. Furthermore, a large chromosome inversion (580 kb) was confirmed in all Chinese isolates including HB0801, HB1007, a strain from cow mastitis milk, and Hubei-1. In addition, the variable surface lipoproteins (vsp) gene cluster existed in HB0801, but contained less than half of the genes, and had poor identity to that in PG45, but they had conserved structures. Further inter-strain comparisons revealed other mechanisms of gene acquisition and loss in HB0801 that primarily involved insertion sequence (IS) elements, integrative conjugative element, restriction and modification systems, and some lipoproteins and transmembrane proteins. Subsequently, PG45 and HB0801 virulence in cattle was compared. Results indicated that both strains were pathogenic to cattle. The scores of gross pathological assessment for the control group, and the PG45- and HB0801-infected groups were 3, 13 and 9, respectively. Meanwhile the scores of lung lesion for these three groups were 36, 70, and 69, respectively. In addition, immunohistochemistry detection demonstrated that both strains were similarly distributed in lungs and lymph nodes. Although PG45 showed slightly higher virulence in calves than HB0801, there was no statistical difference between the strains (P>0.05). Compared to Hubei-1, a total of 122 SNP loci were disclosed in HB0801. In conclusion, although genomic plasticity was thought to be an evolutionary advantage, it did not apparently affect virulence of M. bovis strains in cattle
- âŚ