37 research outputs found

    Elemetary processes of radiation damage in organic molecules of biological interest

    Get PDF
    It was observed in the ‘80s that the radiation damage on biological systems strongly depends on processes occurring at the microscopic level, involving the elementary constituents of biological cells. Since then, lot of attention has been paid to study elementary processes of photo- and ion-chemistry of isolated organic molecule of biological interest. This work fits in this framework and aims to study the radiation damage mechanisms induced by different types of radiations on simple halogenated biomolecules used as radiosensitizers in radiotherapy. The research is focused on the photofragmentation of halogenated pyrimidine molecules (5Br-pyrimidine, 2Br-pyrimidine and 2Cl-pyrimidine) in the VUV range and on the 12C4+ ion-impact fragmentation of the 5Br-uracil and its homogeneous and hydrated clusters. Although halogen substituted pyrimidines have similar structure to the pyrimidine molecule, their photodissociation dynamics is quite different. These targets have been chosen with the purpose of investigating the effect of the specific halogen atom and site of halogenation on the fragmentation dynamics. Theoretical and experimental studies have highlighted that the site of halogenation and the type of halogen atom, lead either to the preferential breaking of the pyrimidinic ring or to the release of halogen/hydrogen radicals. The two processes can subsequently trigger different mechanisms of biological damage. To understand the effect of the environment on the fragmentation dynamic of the single molecule, the ion-induced fragmentation of homogenous and hydrated clusters of 5Br-uracil have been studied and compared to similar studies on the isolated molecule. The results show that the “protective effect” of the environment on the single molecule hold in the homogeneous clusters, but not in the hydrated clusters, where several hydrated fragments have been observed. This indicates that the presence of water molecules can inhibit some fragmentation channels and promote the keto-enol tautomerization, which is very important in the mutagenesis of the DNA

    Charge migration induced by attosecond pulses in bio-relevant molecules

    Get PDF
    After sudden ionization of a large molecule, the positive charge can migrate throughout the system on a sub-femtosecond time scale, purely guided by electronic coherences. The possibility to actively explore the role of the electron dynamics in the photo-chemistry of bio-relevant molecules is of fundamental interest for understanding, and perhaps ultimately controlling, the processes leading to damage, mutation and, more generally, to the alteration of the biological functions of the macromolecule. Attosecond laser sources can provide the extreme time resolution required to follow this ultrafast charge flow. In this review we will present recent advances in attosecond molecular science: after a brief description of the results obtained for small molecules, recent experimental and theoretical findings on charge migration in bio-relevant molecules will be discussed

    Gas Phase Oxidation of Carbon Monoxide by Sulfur Dioxide Radical Cation: Reaction Dynamics and Kinetic Trend With the Temperature

    Get PDF
    Gas phase ion chemistry has fundamental and applicative purposes since it allows the study of the chemical processes in a solvent free environment and represents models for reactions occurring in the space at low and high temperatures. In this work the ion-molecule reaction of sulfur dioxide ion SO2.+ with carbon monoxide CO is investigated in a joint experimental and theoretical study. The reaction is a fast and exothermic chemical oxidation of CO into more stable CO2 by a metal free species, as SO2.+, excited into ro-vibrational levels of the electronic ground state by synchrotron radiation. The results show that the reaction is hampered by the enhancement of internal energy of sulfur dioxide ion and the only ionic product is SO.+. The theoretical approach of variational transition state theory (VTST) based on density functional electronic structure calculations, shows an interesting and peculiar reaction dynamics of the interacting system along the reaction path. Two energy minima corresponding to [SO2–CO].+ and [OS–OCO].+ complexes are identified. These minima are separated by an intersystem crossing barrier which couples the bent 3B2 state of CO2 with C2v symmetry and the 1A1 state with linear D∞h symmetry. The spin and charge reorganization along the minimum energy path (MEP) are analyzed and eventually the charge and spin remain allocated to the SO.+ moiety and the stable CO2 molecule is easily produced. There is no bottleneck that slows down the reaction and the values of the rate coefficient k at different temperatures are calculated with capture theory. A value of 2.95 × 10−10 cm3s−1molecule−1 is obtained at 300 K in agreement with the literature experimental measurement of 3.00 × 10−10 ± 20% cm3s−1molecule−1, and a negative trend with temperature is predicted consistently with the experimental observations

    Electron and ion spectroscopy of Azobenzene in the valence and core shells

    Get PDF
    Azobenzene is a prototype and building block of a class of molecules of extreme technological interest as molecularphoto-switches. We present a joint experimental and theoretical study of its response to irradiation with light across theUV to X-ray spectrum. The study of valence and inner shell photo-ionization and excitation processes, combined withmeasurement of valence photoelectron-photoion coincidence (PEPICO) and of mass spectra across the core thresholdsprovides a detailed insight onto the site- and state-selected photo-induced processes. Photo-ionization and excita-tion measurements are interpreted via the multi-configurational restricted active space self-consistent field (RASSCF)method corrected by second order perturbation theory (RASPT2). Using static modelling, we demonstrate that thecarbon and nitrogen K edges of Azobenzene are suitable candidates for exploring its photoinduced dynamics thanks tothe transient signals appearing in background-free regions of the NEXAFS and XP

    Carbon and Nitrogen K-Edge NEXAFS Spectra of Indole, 2,3-Dihydro-7-azaindole, and 3-Formylindole

    Get PDF
    The near-edge X-ray absorption fine structure (NEXAFS) spectra of indole, 2,3-dihydro-7-azaindole, and 3-formylindole in the gas phase have been measured at the carbon and nitrogen K-edges. The spectral features have been interpreted based on density functional theory (DFT) calculations within the transition potential (TP) scheme, which is accurate enough for a general description of the measured C 1s NEXAFS spectra as well as for the assignment of the most relevant features. For the nitrogen K-edge, the agreement between experimental data and theoretical spectra calculated with TP-DFT was not quite satisfactory. This discrepancy was mainly attributed to the many-body effects associated with the excitation of the core electron, which are better described using the time-dependent density functional theory (TDDFT) with the range-separated hybrid functional CAM-B3LYP. An assignment of the measured N 1s NEXAFS spectral features has been proposed together with a complete description of the observed resonances. Intense transitions from core levels to unoccupied antibonding π* states as well as several transitions with mixed-valence/Rydberg or pure Rydberg character have been observed in the C and N K-edge spectra of all investigated indoles

    Radiation Damage Mechanisms of Chemotherapeutically Active Nitroimidazole Derived Compounds

    Get PDF
    Photoionization mass spectrometry, photoelectron-photoion coincidence spectroscopic technique, and computational methods have been combined to investigate the fragmentation of two nitroimidazole derived compounds: the metronidazole and misonidazole. These molecules are used in radiotherapy thanks to their capability to sensitize hypoxic tumor cells to radiation by “mimicking” the effects of the presence of oxygen as a damaging agent. Previous investigations of the fragmentation patterns of the nitroimidazole isomers (Bolognesi et al., 2016; Cartoni et al., 2018) have shown their capacity to produce reactive molecular species such as nitric oxide, carbon monoxide or hydrogen cyanide, and their potential impact on the biological system. The results of the present work suggest that different mechanisms are active for the more complex metronidazole and misonidazole molecules. The release of nitric oxide is hampered by the efficient formation of nitrous acid or nitrogen dioxide. Although both metronidazole and misonidazole contain imidazole ring in the backbone, the side branches of these molecules lead to very different bonding mechanisms and properties

    Formation of H3O+ and OH by CO2 and N2O trace gases in the atmospheric environment

    No full text
    The impact of cosmic rays’ energetic subatomic particles on climate and global warming is still controversial and under debate. Cosmic rays produce ions that can trigger fast reactions affecting chemical networks in the troposphere and stratosphere especially when a large amount of relevant trace gases such as carbon dioxide, methane, sulfur dioxide and water are injected by volcanic eruptions. This work focuses on synchrotron experiments and an ab initio theoretical study of the ion chemistry of carbon dioxide and nitrous oxide radical cations reacting with water. These molecules catalyze a fast exothermic formation of hydronium ions H3O+ and the hydroxyl radical OH, the main oxidant in the atmosphere. Moreover, theoretical calculations demonstrate that at the end of the catalytic cycle, CO2 and N2O are produced vibrationally excited and subsequently they quench in the microsecond time scale by collision with the surrounding atmospheric molecules at the pressure and temperature of upper-troposphere/stratosphere. The chemistry involved in these reactions has a strong impact on the oxidant capacity of the atmosphere, on the sulfate aerosol production, on the cloud formation and eventually on the chemical networks controlling climate and global warming models

    Ultrafast Dynamics in the DNA Building Blocks Thymidine and Thymine Initiated By Ionizing Radiation

    Get PDF
    Understanding how energetic charged particles damage DNA is crucial for improving radiotherapy techniques such as hadron therapy and for the development of new radiosensitizer drugs. In the present study, the damage caused by energetic particles was simulated by measuring the action of extreme ultraviolet (XUV) attosecond pulses on the DNA building blocks thymine and thymidine. This allowed the ultrafast processes triggered by direct ionization to be probed with an optical pulse with a time resolution of a few femtoseconds. By measuring the yields of fragment ions as a function of the delay between the XUV pulse and the probe pulse, a number of transient processes typically lasting 100 femtoseconds or less were observed. These were particularly strong in thymidine which consists of the thymine base attached to a deoxyribose sugar. This dynamics was interpreted as excited states of the cation, formed by the XUV pulse, rapidly decaying via non-adiabatic coupling between electronic states. This provides the first experimental insight into the mechanisms which immediately proceed from the action of ionizing radiation on DNA and provides a basis on which further theoretical and experimental studies can be conducted

    A Synchrotron Radiation Study of Nitroimidazoles and their Derivatives

    No full text
    Nitroimidazole derived molecules are used in radiotherapy thanks to their capability to sensitize hypoxic tumor cells to radiation by ‘mimicking’ the effects of the presence of oxygen as a damaging agent. Inthis work we present the results of a bottom-up approach, which goes from the model molecule to the real drugs used in therapy. Mass spectrometry and several spectroscopic techniques (XPS, PES, NEXAFS, PEPICO) basedon the use of synchrotron radiation have been combined with computational methods to link the electronic and geometric structure of the molecule to their functions.The investigation of the fragmentation patterns of the nitroimidazole isomers [1,2] has allowed to understand their capacity to produce reactive molecular species like nitric oxide, carbon monoxide or hydrogencyanide and their potential impact on the biological system. Guided by these results, the fragmentation mechanisms of metronidazole and misonidazole, the two radiosensitisers built on the 5-nitroimidazole and 2-nitroimidazole compounds used in therapy, as well as the 1-Methyl-5-nitroimidazole have been investigated. The results on these more complex systems suggest that different mechanisms are active. The release of nitric oxideis hampered by the efficient formation of nitrous acid or nitrogen dioxide and the long and branched tails attached to the imidazole ring increase the ring stability, providing an efficient channel for excess energy dissipation
    corecore