5 research outputs found

    Técnicas de Adquisición de Imágenes de Fondo de Ojo

    Get PDF
    Presentación realizada en el marco del Proyecto PINV18-846: Detección automática de retinopatía diabética utilizando algoritmos neuro-evolutivos. Cuyo objetivo general fue la Detección Automática de Retinopatía Diabética utilizando algoritmos de aprendizaje neuro-evolutivos.CONACYT - Consejo Nacional de Ciencias y TecnologíaPROCIENCI

    Automatic Diagnosis of Ocular Toxoplasmosis from Fundus Images with Residual Neural Networks.

    Get PDF
    Ocular toxoplasmosis (OT) is commonly diagnosed through the analysis of fundus images of the eye by a specialist. Despite Deep Learning being widely used to process and recognize pathologies in medical images, the diagnosis of ocular toxoplasmosis(OT) has not yet received much attention. A predictive computational model is a valuable time-saving option if used as a support tool for the diagnosis of OT. It could also help diagnose atypical cases, being particularly useful for ophthalmologists who have less experience. In this work, we propose the use of a deep learning model to perform automatic diagnosis of ocular toxoplasmosis from images of the eye fundus. A pretrained residual neural network is fine-tuned on a dataset of samples collected at the medical center of Hospital de Clínicas in Asunción, Paraguay. With sensitivity and specificity rates equal to 94% and 93%,respectively, the results show that the proposed model is highly promising. In order to replicate the results and advance further in this area of research, an open data set of images of the eye fundus labeled by ophthalmologists is made available.CONACYT - Consejo Nacional de Ciencia y TecnologíaPROCIENCI

    Dataset from fundus images for the study of diabetic retinopathy.

    Get PDF
    This article presents a database containing 757 color fun dus images acquired at the Department of Ophthalmology of the Hospital de Clínicas, Facultad de Ciencias Médicas (FCM), Universidad Nacional de Asunción (UNA), Paraguay. Firstly, the retinal images were acquired with a clinical procedure presented in this paper. The acquisition of the retinographies was made through the Visucam 500 camera of the Zeiss brand. Next, two expert ophthalmologists have classified the dataset. These data can help physicians and researchers in the detection of cases of Non-Proliferative Diabetic Retinopa thy (NPDR) and Proliferative Diabetic Retinopathy (PDR), in their different stages. The dataset generated will be useful for ophthalmologists and researchers to work on automatic detection algorithms for Diabetic Retinopathy (DR).CONACYT - Consejo Nacional de Ciencia y TecnologíaPROCIENCI

    A Trust-Based Methodology to Evaluate Deep Learning Models for Automatic Diagnosis of Ocular Toxoplasmosis from Fundus Images

    Get PDF
    In the automatic diagnosis of ocular toxoplasmosis (OT), Deep Learning (DL) has arisen as a powerful and promising approach for diagnosis. However, despite the good performance of the models, decision rules should be interpretable to elicit trust from the medical community. Therefore, the development of an evaluation methodology to assess DL models based on interpretability methods is a challenging task that is necessary to extend the use of AI among clinicians. In this work, we propose a novel methodology to quantify the similarity between the decision rules used by a DL model and an ophthalmologist, based on the assumption that doctors are more likely to trust a prediction that was based on decision rules they can understand. Given an eye fundus image with OT, the proposed methodology compares the segmentation mask of OT lesions labeled by an ophthalmologist with the attribution matrix produced by interpretability methods. Furthermore, an open dataset that includes the eye fundus images and the segmentation masks is shared with the community. The proposal was tested on three different DL architectures. The results suggest that complex models tend to perform worse in terms of likelihood to be trusted while achieving better results in sensitivity and specificity

    Dataset of fundus images for the diagnosis of ocular toxoplasmosis

    No full text
    Toxoplasmosis chorioretinitis is commonly diagnosed by an ophthalmologist through the evaluation of the fundus images of a patient. Early detection of these lesions may help to prevent blindness. In this article we present a data set of fundus images labeled into three categories: healthy eye, inactive and active chorioretinitis. The dataset was developed by three ophthalmologists with expertise in toxoplasmosis detection using fundus images. The dataset will be of great use to researchers working on ophthalmic image analysis using artificial intelligence techniques for the automatic detection of toxoplasmosis chorioretinitis
    corecore