41,853 research outputs found
On the contribution of nearly-critical spin and charge collective modes to the Raman spectra of high-Tc cuprates
We discuss how Raman spectra are affected by nearly-critical spin and charge
collective modes, which are coupled to charge carriers near a stripe quantum
critical point. We show that specific fingerprints of nearly-critical
collective modes can indeed be observed in Raman spectra and that the
selectivity of Raman spectroscopy in momentum space may also be exploited to
distinguish the spin and charge contribution. We apply our results to discuss
the spectra of high-Tc superconducting cuprates finding that the collective
modes should have masses with substantial temperature dependence in agreement
with their nearly critical character. Moreover spin modes should be more
diffusive than charge modes indicating that in stripes the charge is nearly
ordered, while spin modes are strongly overdamped and fluctuate with high
frequency.Comment: 5 pages, 3 figure
Conductivity of suspended and non-suspended graphene at finite gate voltage
We compute the DC and the optical conductivity of graphene for finite values
of the chemical potential by taking into account the effect of disorder, due to
mid-gap states (unitary scatterers) and charged impurities, and the effect of
both optical and acoustic phonons. The disorder due to mid-gap states is
treated in the coherent potential approximation (CPA, a self-consistent
approach based on the Dyson equation), whereas that due to charged impurities
is also treated via the Dyson equation, with the self-energy computed using
second order perturbation theory. The effect of the phonons is also included
via the Dyson equation, with the self energy computed using first order
perturbation theory. The self-energy due to phonons is computed both using the
bare electronic Green's function and the full electronic Green's function,
although we show that the effect of disorder on the phonon-propagator is
negligible. Our results are in qualitative agreement with recent experiments.
Quantitative agreement could be obtained if one assumes water molelcules under
the graphene substrate. We also comment on the electron-hole asymmetry observed
in the DC conductivity of suspended graphene.Comment: 13 pages, 11 figure
Charge trapping in polymer transistors probed by terahertz spectroscopy and scanning probe potentiometry
Terahertz time-domain spectroscopy and scanning probe potentiometry were used
to investigate charge trapping in polymer field-effect transistors fabricated
on a silicon gate. The hole density in the transistor channel was determined
from the reduction in the transmitted terahertz radiation under an applied gate
voltage. Prolonged device operation creates an exponential decay in the
differential terahertz transmission, compatible with an increase in the density
of trapped holes in the polymer channel. Taken in combination with scanning
probe potentionmetry measurements, these results indicate that device
degradation is largely a consequence of hole trapping, rather than of changes
to the mobility of free holes in the polymer.Comment: 4 pages, 3 figure
Phenomenological study of the electronic transport coefficients of graphene
Using a semi-classical approach and input from experiments on the
conductivity of graphene, we determine the electronic density dependence of the
electronic transport coefficients -- conductivity, thermal conductivity and
thermopower -- of doped graphene. Also the electronic density dependence of the
optical conductivity is obtained. Finally we show that the classical Hall
effect (low field) in graphene has the same form as for the independent
electron case, characterized by a parabolic dispersion, as long as the
relaxation time is proportional to the momentum.Comment: 4 pages, 1 figur
- …