3 research outputs found

    Effect of ω-conotoxin MVIIA and Phα1β on paclitaxel-induced acute and chronic pain

    Get PDF
    AbstractThe treatment with the chemotherapeutic agent paclitaxel produces a painful peripheral neuropathy, and is associated with an acute pain syndrome in a clinically significant number of patients. However, no standard therapy has been established to manage the acute pain or the chronic neuropathic pain related to paclitaxel. In the present study, we evaluated the analgesic potential of two N-type voltage-gated calcium channel (VGCC) blockers, ω-conotoxin MVIIA and Phα1β, on acute and chronic pain induced by paclitaxel. Adult male rats were treated with four intraperitoneal injections of paclitaxel (1+1+1+1mg/kg, in alternate days) and the development of mechanical hyperalgesia was evaluated 24h (acute painful stage) or 15days (chronic painful stage) after the first paclitaxel injection. Not all animals showed mechanical hyperalgesia 24h after the first paclitaxel injection, but those that showed developed a more intense mechanical hyperalgesia at the chronic painful stage. Intrathecal administration (i.t.) of ω-conotoxin MVIIA (3–300pmol/site) or Phα1β (10–300pmol/site) reduced the mechanical hyperalgesia either at the acute or at the chronic painful stage induced by paclitaxel. When administered at the acute painful stage, ω-conotoxin MVIIA (300pmol/site, i.t.) and Phα1β (300pmol/site, i.t.) prevented the worsening of chronic mechanical hyperalgesia. Furthermore, Phα1β (30-300pmol/site, i.t.) elicited less adverse effects than ω-conotoxin MVIIA (10-300 pmol/site, i.t.). Taken together, our data evidence the involvement of N-type VGCC in pain sensitization induced by paclitaxel and point out the potential of Phα1β as a safer alternative than ω-conotoxin MVIIA to treat the pain related to paclitaxel

    Data and calculus on isobolographic analysis to determine the antinociceptive interaction between calcium channel blocker and a TRPV1 blocker in acute pain model in mice

    No full text
    Determining antinociceptive interaction between Phα1β toxin (a voltage gated calcium channel blocker) and SB366791 (selective TRPV1 antagonist) may have both clinical and mechanistic implications for the pain management. This data in brief article is associated to the research paper “Synergistic antinociceptive effect of a calcium channel blocker and a TRPV1 blocker in an acute pain model in mice”. This material supports the isobolographic analysis performed with the above drugs and shows: data of the dose response curves of the agents given as single drug or combination regimens. Mathematics and statistical processing of dose response curves, proportion of drugs dosage to be used in the combination, calculus of theoretical additive DE20 dose as well as experimentally obtained DE20 are provided. It is also presented details of statistical comparison between theoretical and experimentally obtained DE20
    corecore