28,123 research outputs found

    Bilayer graphene: gap tunability and edge properties

    Full text link
    Bilayer graphene -- two coupled single graphene layers stacked as in graphite -- provides the only known semiconductor with a gap that can be tuned externally through electric field effect. Here we use a tight binding approach to study how the gap changes with the applied electric field. Within a parallel plate capacitor model and taking into account screening of the external field, we describe real back gated and/or chemically doped bilayer devices. We show that a gap between zero and midinfrared energies can be induced and externally tuned in these devices, making bilayer graphene very appealing from the point of view of applications. However, applications to nanotechnology require careful treatment of the effect of sample boundaries. This being particularly true in graphene, where the presence of edge states at zero energy -- the Fermi level of the undoped system -- has been extensively reported. Here we show that also bilayer graphene supports surface states localized at zigzag edges. The presence of two layers, however, allows for a new type of edge state which shows an enhanced penetration into the bulk and gives rise to band crossing phenomenon inside the gap of the biased bilayer system.Comment: 8 pages, 3 fugures, Proceedings of the International Conference on Theoretical Physics: Dubna-Nano200

    Structure-dependent radiative corrections to phi -> K^+K^-/K_LK_S decays

    Full text link
    Current predictions for the ratio of phi -> K^+K^-/K_LK_S decay rates exceed the corresponding experimental value in about five standard deviations. By far, the dominant sources of isospin breaking to this ratio are the phase-space (52%) and the electromagnetic radiative (4.3%, computed within scalar QED) corrections. Here we estimate the effects of the electromagnetic structure of kaons and other model-dependent contributions into the radiative corrections.Comment: 8 pages, Latex, 2 .eps figure

    Coulomb blockade in graphene nanoribbons

    Full text link
    We propose that recent transport experiments revealing the existence of an energy gap in graphene nanoribbons may be understood in terms of Coulomb blockade. Electron interactions play a decisive role at the quantum dots which form due to the presence of necks arising from the roughness of the graphene edge. With the average transmission as the only fitting parameter, our theory shows good agreement with the experimental data.Comment: 4 pages, 2 figure

    Telescope performance and image simulations of the balloon-borne coded-mask protoMIRAX experiment

    Get PDF
    In this work we present the results of imaging simulations performed with the help of the GEANT4 package for the protoMIRAX hard X-ray balloon experiment. The instrumental background was simulated taking into account the various radiation components and their angular dependence, as well as a detailed mass model of the experiment. We modeled the meridian transits of the Crab Nebula and the Galatic Centre region during balloon flights in Brazil (23\sim -23^{\circ} of latitude and an altitude of 40\sim 40 \thinspace km) and introduced the correspondent spectra as inputs to the imaging simulations. We present images of the Crab and of three sources in the Galactic Centre region: 1E 1740.7-2942, GRS 1758-258 and GX 1+4. The results show that the protoMIRAX experiment is capable of making spectral and timing observations of bright hard X-ray sources as well as important imaging demonstrations that will contribute to the design of the MIRAX satellite mission.Comment: 9 figure

    Localized states at zigzag edges of bilayer graphene

    Full text link
    We report the existence of zero energy surface states localized at zigzag edges of bilayer graphene. Working within the tight-binding approximation we derive the analytic solution for the wavefunctions of these peculiar surface states. It is shown that zero energy edge states in bilayer graphene can be divided into two families: (i) states living only on a single plane, equivalent to surface states in monolayer graphene; (ii) states with finite amplitude over the two layers, with an enhanced penetration into the bulk. The bulk and surface (edge) electronic structure of bilayer graphene nanoribbons is also studied, both in the absence and in the presence of a bias voltage between planes.Comment: 4 pages, 5 figure

    Long-distance radiative corrections to the di-pion tau lepton decay

    Get PDF
    We evaluate the model-dependent piece of O(alpha) long-distance radiative corrections to tau^- \to \pi^- \pi^0\nu_{\tau} decays by using a meson dominance model. We find that these corrections to the di-pion invariant mass spectrum are smaller than in previous calculations based on chiral perturbation theory. The corresponding correction to the photon inclusive rate is tiny (-0.15%) but it can be of relevance when new measurements reach better precision.Comment: 4 pages, 2 figures. An estimate of the shift produced in the evaluation of the h.v.p. contribution to the muon anomalous magnetic moment is added. Version to appear in Phys. Rev.

    AE Aurigae: first detection of non-thermal X-ray emission from a bow shock produced by a runaway star

    Get PDF
    Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the production of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace by the encounter of two massive binary systems and now is passing through the dense nebula IC 405. The X-ray emission from the bow shock is detected at 30" to the northeast of the star, coinciding with an enhancement in the density of the nebula. From the analysis of the observed X-ray spectrum of the source and our theoretical emission model, we confirm that the X-ray emission is produced mainly by inverse Compton upscattering of infrared photons from dust in the shock front.Comment: Accepted for publication in the Astrophysical Journal with number ApJ, 757, L6. Four figure
    corecore