9 research outputs found

    Detection and Management of Amyloid-Related Imaging Abnormalities in Patients with Alzheimer’s Disease Treated with Anti-Amyloid Beta Therapy

    No full text
    Amyloid-related imaging abnormalities (ARIA) are adverse events reported in Alzheimer’s disease trials of anti-amyloid beta (Aβ) therapies. This review summarizes the existing literature on ARIA, including bapineuzumab, gantenerumab, donanemab, lecanemab, and aducanumab studies, with regard to potential risk factors, detection, and management. The pathophysiology of ARIA is unclear, but it may be related to binding of antibodies to accumulated Aβ in both the cerebral parenchyma and vasculature, resulting in loss of vessel wall integrity and increased leakage into surrounding tissues. Radiographically, ARIA-E is identified as vasogenic edema in the brain parenchyma or sulcal effusions in the leptomeninges/ sulci, while ARIA-H is hemosiderin deposits presenting as microhemorrhages or superficial siderosis. ARIA tends to be transient and asymptomatic in most cases, typically occurring early in the course of treatment, with the risk decreasing later in treatment. Limited data are available on continued dosing following radiographic findings of ARIA; hence, in the event of ARIA, treatment should be continued with caution and regular monitoring. Clinical trials have implemented management approaches such as temporary suspension of treatment until symptoms or radiographic signs of ARIA have resolved or permanent discontinuation of treatment. ARIA largely resolves without concomitant treatment, and there are no systematic data on potential treatments for ARIA. Given the availability of an anti-Aβ therapy, ARIA monitoring will now be implemented in routine clinical practice. The simple magnetic resonance imaging sequences used in clinical trials are likely sufficient for effective detection of cases. Increased awareness and education of ARIA among clinicians and radiologists is vital

    Optimal Intereye Difference Thresholds in Retinal Nerve Fiber Layer Thickness or Predicting a Unilateral Optic Nerve Lesion in Multiple Sclerosis

    No full text
    The optic nerve is a frequent site for involvement in multiple sclerosis (MS). Optical coherence tomography (OCT) detects thinning of the retinal nerve fiber layer (RNFL) in eyes of patients with MS and in those meeting criteria for clinically or radiologically isolated demyelinating syndromes. Current international diagnostic criteria for MS do not include the optic nerve as an imaging lesion site despite the high prevalence of acute optic neuritis (ON), or occult optic neuropathy, among early MS and clinically isolated syndrome patients; as well as most MS patients over the course of the disease. We sought to determine optimal thresholds for intereye difference in peripapillary RNFL thickness that are most predictive of a unilateral optic nerve lesion. We analyzed spectral domain OCT data of 31 healthy volunteers and 124 patients with MS at a single center as part of an ongoing collaborative investigation of visual outcomes. Intereye differences in peripapillary (360°) RNFL thickness were calculated as the absolute value of the difference. First, we determined the 95th percentile value of intereye difference for the healthy volunteers. This value was applied to the convenience sample group of MS patients as a validation cohort determining how well this threshold could distinguish patients with vs without a history of unilateral ON. The relation of intereye differences in peripapillary RNFL thickness to binocular low-contrast letter acuity scores was also examined. Among healthy volunteer participants (n = 31), the 95th percentile value for intereye difference (upper boundary of expected for normal controls) was 6.0 μm. This value was applied to the convenience sample group of MS patients (n = 124, validation cohort). Positive predictive value, negative predictive value, sensitivity, and specificity for identifying MS patients with a history of unilateral ON were calculated for the 6-μm threshold value in a 2 × 2 table analysis with the application of χ tests (P < 0.0001). The 6-μm threshold was predictive of worse binocular low-contrast acuity scores at 2.5% (P = 0.03) and 1.25% (P = 0.002 by linear regression analyses). A receiver operating characteristic curve analysis demonstrated an optimal intereye difference threshold of 5 μm for identifying unilateral ON in the MS cohort. An intereye difference of 5-6 μm in RNFL thickness is a robust structural threshold for identifying the presence of a unilateral optic nerve lesion in MS

    Safety and efficacy of rasagiline as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomised, double-blind, parallel-group, placebo-controlled, phase 2 trial

    No full text
    corecore