5 research outputs found

    Dynamics of wrinkling in ultrathin elastic sheets

    Full text link
    The wrinkling of thin elastic objects provides a means of generating regular patterning at small scales in applications ranging from photovoltaics to microfluidic devices. Static wrinkle patterns are known to be governed by an energetic balance between the object's bending stiffness and an effective substrate stiffness, which may originate from a true substrate stiffness or from tension and curvature along the wrinkles. Here we investigate dynamic wrinkling, induced by the impact of a solid sphere onto an ultra-thin polymer sheet floating on water. The vertical deflection of the sheet's centre induced by impact draws material radially inwards, resulting in an azimuthal compression that is relieved by the wrinkling of the entire sheet. We show that this wrinkling is truly dynamic, exhibiting features that are qualitatively different to those seen in quasi-static wrinkling experiments. Moreover, we show that the wrinkles coarsen dynamically because of the inhibiting effect of the fluid inertia. This dynamic coarsening can be understood heuristically as the result of a dynamic stiffness, which dominates the static stiffnesses reported thus far, and allows new controls of wrinkle wavelength.Comment: 8 pages, 4 figures. Please see published version for supplementary movies and SI Appendi

    Electrophoretic molecular communication with piecewise constant electric field

    Get PDF
    This paper studies a novel electrophoretic molecular communication (EMC) framework utilizing a piecewise constant electric field. EMC is a particular type of molecular communication that exploits electric fields to induce the movement of charged particles to enhance communication performance. Our previous work proposed an EMC framework utilizing a time-varying electric field that exponentially changes; however, the field with such a complicated shape might be challenging to be implemented in practice. Thus, this paper proposes a new EMC approach exploiting a piecewise constant electric field that can be readily implemented via, e.g., an on/off switch method. We formulate two optimization problems to design the electric field based on different objectives: minimizing a mean squared error and minimizing a bit interval. The solutions of each, such as optimal on-off timings and corresponding strengths of the constant electric fields, are obtained through the Lagrange multiplier approach and the geometric programming, respectively. The Monte Carlo simulation results verify that the proposed piecewise constant electric field significantly reduces the bit error rate relative to the constant field benchmark while performing less well, but not significantly, than the exponential field benchmark

    Droplet impact dynamics on shallow pools

    No full text

    Surface tension measurement and calculation of model biomolecular condensates

    Get PDF
    The surface tension of liquid-like protein-rich biomolecular condensates is an emerging physical principle governing the mesoscopic interior organisation of biological cells. In this study, we present a method to evaluate the surface tension of model biomolecular condensates, through straighforward sessile drop measurements of capillary lengths and condensate densities. Our approach bypasses the need for characterizing condensate viscosities, which was required in previously reported techniques. We demonstrate this method using model condensates comprising two mutants of the intrinsically disordered protein Ddx4N. Notably, we uncover a detrimental impact of increased protein net charge on the surface tension of Ddx4N condensates. Furthermore, we explore the application of Scheutjens-Fleer theory, calculating condensate surface tensions through a self-consistent mean-field framework using Flory-Huggins interaction parameters. This relatively simple theory provides semi-quantitative accuracy in predicting Ddx4N condensate surface tensions and enables the evaluation of molecular organisation at condensate surfaces. Our findings shed light on the molecular details of fluid-fluid interfaces in biomolecular condensates.</p

    A new flow-based design for double-lumen needles

    Full text link
    Oocyte retrieval forms a crucial part of in vitro fertilisation treatment and its ultimate outcome. Standard double-lumen needles, which include a sequence of aspiration and flushing steps, are characterised by a similar success rate to single-lumen needles, despite their increased cost. A novel hydrodynamics-based needle is proposed here, which is geared towards the generation of an internal flow field within the full follicular volume via laterally, rather than frontally, oriented flushing, leading to successful retrievals with no additional stress on the oocyte. A digital twin of the follicular environment is created and tested via multi-phase flow direct numerical simulations. Oocyte initial location within the follicle is varied, while quantities of interest such as velocity magnitude and vorticity are measured with a high level of precision. This provides insight into the overall fluid motion, as well as the trajectory and stresses experienced by the oocyte. The new design creates flow fields that affect the entire volume, successfully steering oocytes that would otherwise be unreachable with traditional needles. A comparative benchmark set of tests indicated a 100% success rate of the new needle, a net improvement over the traditional design, with a 66% success rate in our testing framework. All forces measured during these tests showcase how the oocyte experiences stresses which are no larger than at the aspiration point, with the flow field providing a gentle steering effect towards the extraction region. Finally, the flow generation strategy maximises oocyte yield, unlocking new capabilities in both the human and veterinary contexts.Comment: 14 pages, 4 figure
    corecore