24 research outputs found

    Plans for laser spectroscopy of trapped cold hydrogen-like HCI

    Get PDF
    Laser spectroscopy studies are being prepared to measure the 1s ground state hyperfine splitting in trapped cold highly charged ions. The purpose of such experiments is to test quantum electrodynamics in the strong electric field regime. These experiments form part of the HITRAP project at GSI. A brief review of the planned experiments is presented.Comment: 4 pages, 4 figures, accepted for publication (NIMB

    Novel designs for Penning ion traps

    No full text
    A number of alternative designs are presented for Penning ion traps suitable for quantum information processing (QIP) applications with atomic ions. The first trap design is a simple array of long straight wires, which allows easy optical access. A prototype of this trap has been built to trap Ca+ and a simple electronic detection scheme has been employed to demonstrate the operation of the trap. Another trap design consists of a conducting plate with a hole in it situated above a continuous conducting plane. The final trap design is based on an array of pad electrodes. Although this trap design lacks the open geometry of the other traps described above, the pad design may prove useful in a hybrid scheme in which information processing and qubit storage take place in different types of trap. The behaviour of the pad traps is simulated numerically and techniques for moving ions rapidly between traps are discussed. Future experiments with these various designs are discussed. All of the designs lend themselves to the construction of multiple trap arrays, as required for scalable ion trap QIP

    Plans for laser spectroscopy of trapped cold hydrogen-like HCI

    No full text
    Laser spectroscopy studies are being prepared to measure the 1s ground state hyperfine splitting in trapped cold highly charged ions. The purpose of such experiments is to test quantum electrodynamics in the strong electric field regime. These experiments form part of the HITRAP project at GSI. A brief review of the planned experiments is presented. © 2005 Elsevier B.V. All rights reserved
    corecore