752 research outputs found

    Thermodynamic Geometry of Nambu -- Jona Lasinio model

    Full text link
    The formalism of Riemannian geometry is applied to study the phase transitions in Nambu -Jona Lasinio (NJL) model. Thermodynamic geometry reliably describes the phase diagram, both in the chiral limit and for finite quark masses. The comparison between the geometrical study of NJL model and of (2+1) Quantum Chromodynamics at high temperature and small baryon density shows a clear connection between chiral symmetry restoration/breaking and deconfinement/confinement regimes

    Universal strangeness production and size fluctuactions in small and large systems

    Full text link
    Strangeness production in high multiplicity events gives indications on the transverse size fluctuactions in nucleus-nucleus (AAAA), proton-nucleus (pApA) and proton-proton (pppp) collisions. In particular the behavior of strange particle hadronization in "small" (pp,pApp,pA) and "large" (AAAA) initial configurations of the collision can be tested for the specific particle species, for different centralities and for large fluctuations of the transverse size in pApA and pppp by using the recent ALICE data. A universality of strange hadron production emerges by introducing a dynamical variable proportional to the initial parton density in the transverse plane.Comment: talk at EPS-HEP conference , Venice, 201

    Hybrid neutron stars within the Nambu-Jona-Lasinio model and confinement

    Full text link
    Recently, it has been shown that the standard Nambu-Jona-Lasinio (NJL) model is not able to reproduce the correct QCD behavior of the gap equation at large density, and therefore a different cutoff procedure at large momenta has ben proposed. We found that, even with this density dependent cutoff procedure, the pure quark phase in neutron stars (NS) interiors is unstable, and we argue that this could be related to the lack of confinement in the original NJL model.Comment: 2 pages, 1 figure, to be published in the proceedings of the conference EXOCT07, Catania, 11-15 June, 200

    The Anxiolytic Drug Buspirone Prevents Rotenone-Induced Toxicity in a Mouse Model of Parkinson's Disease.

    Full text link
    A pharmacological and genetic blockade of the dopamine D3 receptor (D3R) has shown to be neuroprotective in models of Parkinson's disease (PD). The anxiolytic drug buspirone, a serotonin receptor 1A agonist, also functions as a potent D3R antagonist. To test if buspirone elicited neuroprotective activities, C57BL/6 mice were subjected to rotenone treatment (10mg/kg i.p for 21 days) to induce PD-like pathology and were co-treated with increasing dosages of buspirone (1, 3, or 10 mg/kg i.p.) to determine if the drug could prevent rotenone-induced damage to the central nervous system (CNS). We found that high dosages of buspirone prevented the behavioural deficits caused by rotenone in the open field test. Molecular and histological analyses confirmed that 10 mg/kg of buspirone prevented the degeneration of TH-positive neurons. Buspirone attenuated the induction of interleukin-1β and interleukin-6 expression by rotenone, and this was paralleled by the upregulation of arginase-1, brain-derived neurotrophic factor (BDNF), and activity-dependent neuroprotective protein (ADNP) in the midbrain, striatum, prefrontal cortex, amygdala, and hippocampus. Buspirone treatment also improved mitochondrial function and antioxidant activities. Lastly, the drug prevented the disruptions in the expression of two neuroprotective peptides, pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP). These results pinpoint the neuroprotective efficacy of buspirone against rotenone toxicity, suggesting its potential use as a therapeutic agent in neurodegenerative and neuroinflammatory diseases, such as PD

    Deconfinement transition effects on cosmological parameters and primordial gravitational waves spectrum

    Get PDF
    The cosmological evolution can be described in terms of directly measurable cosmological scalar parameters (deceleration q, jerk j, snap s, etcâ‹Ż) constructed out of high order derivatives of the scale factor. Their behavior at the critical temperature of the quantum chromodynamics (QCD) phase transition in early universe could be a specific tool to study the transition, analogously to the fluctuations of conserved charges in QCD. We analyze the effect of the crossover transition from quarks and gluons to hadrons in early universe on the cosmological scalars and on the gravitational wave spectrum, by using the recent lattice QCD equation of state and including the electroweak degrees of freedom. Near the transition the cosmological parameters follow the behavior of QCD trace anomaly and of the speed of sound of the entire system. The effects of deconfinement turn out to be more relevant for the modification of the primordial spectrum of gravitational waves rather than for the evolution of the cosmological parameters. Our complete analysis, based on lattice QCD simulations and on the hadron resonance gas below the critical temperature, refines previous results

    Noncommutativity and Lorentz Violation in Relativistic Heavy Ion Collisions

    Get PDF
    The experimental detection of the effects of noncommuting coordinates in electrodynamic phenomena depends on the magnitude of |\theta B|, where \theta is the noncommutativity parameter and B a background magnetic field. With the present upper bound on \theta, given by \theta_{\rm bound} \simeq 1/(10 {\rm TeV})^2, there was no large enough magnetic field in nature, including those observed in magnetars, that could give visible effects or, conversely, that could be used to further improve \theta_{\rm bound}. On the other hand, recently it has been proposed that intense enough magnetic fields should be produced at the beginning of relativistic heavy ion collisions. We discuss here lepton pair production by free photons as one kind of signature of noncommutativity and Lorentz violation that could occur at RHIC or LHC. This allows us to obtain a more stringent bound on \theta, given by 10^{-3} \theta_{\rm bound}, if such "exotic" events do not occur.Comment: Five pages, no figures
    • …
    corecore