2 research outputs found

    A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein

    Get PDF
    Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrPC) into PrPSc, a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrPSc is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrPC may provide an opportunity to overcome these problems. PrPC ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrPC, and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrPC-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrPC-dependent synaptotoxicity of amyloid-beta (A beta) oligomers, which are associated with Alzheimer's Disease. These results demonstrate that molecules binding to PrPC may produce a dual effect of blocking prion replication and inhibiting PrPC-mediated toxicity

    Detection of amyloid fibrils in Parkinson's disease using plasmonic chirality

    No full text
    Las fibrillas amiloides, que están estrechamente asociadas con varias enfermedades neurodegenerativas, son los productos finales de muchas vías de agregación de proteínas. Por lo tanto, la identificación de las fibrillas en baja concentración es fundamental para el diagnóstico de las enfermedades y el desarrollo de estrategias terapéuticas. Informamos de una metodología para la identificación específica de las fibrillas amiloides mediante efectos quiroprácticos en nanopartículas plasmónicas. La formación de las fibrillas amiloides basadas en α-sinucleína fue probada utilizando nanorodos de oro, que no mostraron ninguna interacción aparente con las proteínas monoméricas, pero sí una efectiva adsorción a las estructuras fibrilares mediante interacciones no covalentes. La estructura amiloide impulsa una disposición helicoidal de los nanorodios, lo que da lugar a una intensa actividad óptica en las longitudes de onda de resonancia del plasmón de la superficie. Esta técnica de detección se aplicó con éxito a los homogeneizados del cerebro humano de los pacientes afectados por la enfermedad de Parkinson, en los que se identificaron las fibrillas proteínicas relacionadas con la enfermedad mediante señales quirales de nanorodos de Au en el infrarrojo visible y cercano, mientras que las muestras de cerebro sano no mostraron ninguna actividad óptica significativa. La técnica se amplió además a la detección específica de amiloides infecciosos formados por proteínas priónicas, confirmando así el amplio potencial de la técnica. La intensa respuesta quiral impulsada por un fuerte acoplamiento dipolar en arreglos helicoidales de Au nanorod nos permitió detectar fibrillas amiloides hasta concentraciones nanomolares.Amyloid fibrils, which are closely associated with various neurodegenerative diseases, are the final products in many protein aggregation pathways. The identification of fibrils at low concentration is, therefore, pivotal in disease diagnosis and development of therapeutic strategies. We report a methodology for the specific identification of amyloid fibrils using chiroptical effects in plasmonic nanoparticles. The formation of amyloid fibrils based on α-synuclein was probed using gold nanorods, which showed no apparent interaction with monomeric proteins but effective adsorption onto fibril structures via noncovalent interactions. The amyloid structure drives a helical nanorod arrangement, resulting in intense optical activity at the surface plasmon resonance wavelengths. This sensing technique was successfully applied to human brain homogenates of patients affected by Parkinson’s disease, wherein protein fibrils related to the disease were identified through chiral signals from Au nanorods in the visible and near IR, whereas healthy brain samples did not exhibit any meaningful optical activity. The technique was additionally extended to the specific detection of infectious amyloids formed by prion proteins, thereby confirming the wide potential of the technique. The intense chiral response driven by strong dipolar coupling in helical Au nanorod arrangements allowed us to detect amyloid fibrils down to nanomolar concentrations.• Comisión Europea. Programa Marie Sklodowska-Curie. Proyecto H2020-MSCA-IF-2015_708321, para Jatish Kumar • Consejo Europeo de Investigación. Proyectos 335078 COLOURATOM y 648071 ProNANO, para Sara • • Comisión Europea. Programa Marie Sklodowska-Curie. Proyecto H2020-MSCA-IF-2015_708321, para Jatish Kumar • Consejo Europeo de Investigación. Proyectos 335078 COLOURATOM y 648071 ProNANO, para Bals y Aitziber López Cortajarena • Comisión Europea. Proyecto EUSMI 731019, para Sara Bals y Luis Manuel Liz Marzán • Ministerio de Economía y Competitividad. Proyectos MAT2013-46101-R, AGL2015-65046-C2-1-R, y BIO2016-77367-C2-1-R, para Aitziber López Cortajarena, Joaquín Castilla Castrillón y Luis Manuel Liz MarzánpeerReviewe
    corecore