6,957 research outputs found

    A refined analysis of the remarkable Bp star HR 6000

    Full text link
    UVES spectra of the very young (~10^7 years) peculiar B-type star HR 6000 were analyzed in the near-UV and visual spectral regions (3050-9460 A) with the aim to extend to other spectral ranges the study made previously in the UV using IUE spectra. Stellar parameters Teff=12850K, logg=4.10, and xi=0km/s, as determined from H_beta, H_gamma, H_delta Balmer profiles and from the Fe I, Fe II ionization equilibrium, were used to compute an individual abundances ATLAS12 model. We identified spectral peculiarities and obtained final stellar abundances by comparing observed and computed equivalent widths and line profiles. The adopted model fails to reproduce the (b-y) and c color indices. The spectral analysis has revealed: the presence of emission lines for Mn II, Cr II, and Fe II; isotopic anomalies for Hg, Ca; the presence of interstellar lines of Na I at lambda lambda 3302.3, 3302.9, 5890, 5896 A, and of K I at 7665, 7699 A; the presence of a huge quantity of unidentified lines, which we presume to be mostly due to Fe II transitions owing to the large Fe overabundance amounting to [+0.7]. The main chemical peculiarities are an extreme overabundance of Xe, followed by those of Hg, P, Y, Mn, Fe, Be, and Ti. The most underabundant element is Si, followed by C, N, Al, S, Mg, V, Sr, Co, Cl, Sc, and Ni. The silicon underabundance [-2.9] is the lowest value for Si ever observed in any HgMn star. The observed lines of He I can not be reproduced by a single value of the He abundance, but they require values ranging from [-0.8] to [-1.6]. Furthermore, when the observed and computed wings of He I lines are fitted, the observed line cores are much weaker than the computed ones. From the present analysis we infer the presence of vertical abundance stratification for He, Mn, and possibly also P.Comment: 14 pages, 8 figures, 6 tables, accepted for publication in A&

    High resolution spectroscopy of HgMn stars: a time of surprises

    Get PDF
    We present the results of a high spectral resolution study of a few spectroscopic binaries with HgMn primary stars. We detect for the first time in the spectra of HgMn stars that for many elements the line profiles are variable over the rotation period. The strongest profile variations are found for the elements Pt, Hg, Sr, Y, Zr, Mn, Ga, He and Nd. The slight variability of He and Y is also confirmed from the study of high resolution spectra of another HgMn star, alpha And.Comment: 2 pages, 2 figures, to appear in "Precision Spectroscopy in Astrophysics

    Mechanical properties of carbynes investigated by ab initio total-energy calculations

    Get PDF
    As sp carbon chains (carbynes) are relatively rigid molecular objects, can we exploit them as construction elements in nanomechanics? To answer this question, we investigate their remarkable mechanical properties by ab-initio total-energy simulations. In particular, we evaluate their linear response to small longitudinal and bending deformations and their failure limits for longitudinal compression and elongation.Comment: 6 pages, 4 figures, 1 tabl

    Drawing bobbin lace graphs, or, Fundamental cycles for a subclass of periodic graphs

    Full text link
    In this paper, we study a class of graph drawings that arise from bobbin lace patterns. The drawings are periodic and require a combinatorial embedding with specific properties which we outline and demonstrate can be verified in linear time. In addition, a lace graph drawing has a topological requirement: it contains a set of non-contractible directed cycles which must be homotopic to (1,0)(1,0), that is, when drawn on a torus, each cycle wraps once around the minor meridian axis and zero times around the major longitude axis. We provide an algorithm for finding the two fundamental cycles of a canonical rectangular schema in a supergraph that enforces this topological constraint. The polygonal schema is then used to produce a straight-line drawing of the lace graph inside a rectangular frame. We argue that such a polygonal schema always exists for combinatorial embeddings satisfying the conditions of bobbin lace patterns, and that we can therefore create a pattern, given a graph with a fixed combinatorial embedding of genus one.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    New ATLAS9 And MARCS Model Atmosphere Grids for the Apache Point Observatory Galactic Evolution Experiment (APOGEE)

    Full text link
    We present a new grid of model photospheres for the SDSS-III/APOGEE survey of stellar populations of the Galaxy, calculated using the ATLAS9 and MARCS codes. New opacity distribution functions were generated to calculate ATLAS9 model photospheres. MARCS models were calculated based on opacity sampling techniques. The metallicity ([M/H]) spans from -5 to 1.5 for ATLAS and -2.5 to 0.5 for MARCS models. There are three main differences with respect to previous ATLAS9 model grids: a new corrected H2O linelist, a wide range of carbon ([C/M]) and alpha element [alpha/M] variations, and solar reference abundances from Asplund et al. 2005. The added range of varying carbon and alpha element abundances also extends the previously calculated MARCS model grids. Altogether 1980 chemical compositions were used for the ATLAS9 grid, and 175 for the MARCS grid. Over 808 thousand ATLAS9 models were computed spanning temperatures from 3500K to 30000K and log g from 0 to 5, where larger temperatures only have high gravities. The MARCS models span from 3500K to 5500K, and log g from 0 to 5. All model atmospheres are publically available online.Comment: 8 pages, 6 figures, 5 tables, accepted for publication in The Astronomical Journa

    Stellar populations in the dwarf spheroidal galaxy Leo I

    Get PDF
    We present a detailed study of the color magnitude diagram (CMD) of the dwarf spheroidal galaxy Leo I, based on archival Hubble Space Telescope data. Our photometric analysis, confirming previous results on the brighter portion of the CMD, allow us to obtain an accurate sampling of the stellar populations also at the faint magnitudes corresponding to the Main Sequence. By adopting a homogeneous and consistent theoretical scenario for both hydrogen and central helium-burning evolutionary phases, the various features observed in the CMD are interpreted and reliable estimations for both the distance modulus and the age(s) for the main stellar components of Leo I are derived. More in details, from the upper luminosity of the Red Giant Branch and the lower luminosity of the Subgiant Branch we simultaneously constrain the galaxy distance and the age of the oldest stellar population in Leo I. In this way we obtain a distance modulus (m-M)_V=22.00±\pm0.15 mag and an age of 10--15 Gyr or 9--13 Gyr, adopting a metallicity Z=0.0001 and 0.0004, respectively. The reliability of this distance modulus has been tested by comparing the observed distribution of the Leo I anomalous Cepheids in the period-magnitude diagram with the predicted boundaries of the instability strip, as given by convective pulsating models.Comment: 19 pages, 3 tables, 14 figures To be published in A
    • …
    corecore