53 research outputs found

    Tantalum-oxide catalysed chemical vapour deposition of single- and multi-walled carbon nanotubes

    Get PDF
    Tantalum-oxide thin films are shown to catalyse single- and multi-walled carbon nanotube growth by chemical vapour deposition. A low film thickness, the nature of the support material (best results with SiO2) and an atmospheric process gas pressure are of key importance for successful nanotube nucleation. Strong material interactions, such as silicide formation, inhibit nanotube growth. In situ X-ray photoelectron spectroscopy indicates that no catalyst reduction to Ta-metal or Ta-carbide occurs during our nanotube growth conditions and that the catalytically active phase is the Ta-oxide phase. Such a reduction-free oxide catalyst can be technologically advantageous.S.H. acknowledges funding from the EPSRC (Grant No. EP/ H047565/1) and from ERC grant InsituNANO (project reference 279342). We acknowledge the Helmholtz-Zentrum-Berlin BESSY II synchrotron, and we thank the BESSY staff for continuous support. We acknowledge partial funding from the EC project Technotubes. C.D. acknowledges the Royal Society for funding and B.C.B. acknowledges a Research Fellowship from Hughes Hall, Cambridge.This is the final published version. It first appeared at http://pubs.rsc.org/en/Content/ArticleLanding/2013/RA/c3ra23304a#!divAbstract

    Electro-chemical deposition of zinc oxide nanostructures by using two electrodes

    Get PDF
    One of the most viable ways to grow nanostructures is electro deposition. However, most electrodeposited samples are obtained by three-electrode electrochemical cell. We successfully use a much simpler two-electrode cell to grow different ZnO nanostructures from common chemical reagents. Concentration, pH of the electrolytes and growth parameters like potentials at the electrodes, are tailored to allow fast growth without complexity. Morphology and surface roughness are investigated by Scanning Electron and Air Force Microscopy (SEM and AFM) respectively, crystal structure by X-Ray Diffraction measurements (XRD) and ZnO stoichiometry by core level photoemission spectroscopy (XPS)

    Chemical Bond and Charge Transfer Dynamics of a Dye-Hierarchical TiO2 Hybrid Interface

    Get PDF
    The adsorption of Zn-Tetra-Phenyl-Porphyrin (ZnTPP) on nanoporous hierarchically organized anatase TiO2 structures, and the properties of the corresponding hybrid interface were studied by synchrotron radiation experiments. The molecular structure, electronic properties and the bonding with nanostructured TiO2 surfaces were analyzed by photoemission (XPS and UPS) and x-ray absorption spectroscopy (XAS). The charge transfer at the interface was investigated by means of valence band resonant photoemission experiments (ResPES) at the C K edge. We show that the charge transfer dynamics between the photo-excited ZnTPP and TiO2 is strongly influenced by the presence of defects on the TiO2 surface. On a stoichiometric anatase nanostructure, ZnTPP bonding occurs primarily via carbon atoms belonging to the molecular phenyl rings and this creates a preferential channel for the charge transfer. This phenomenon is reduced in the case of defective TiO2 surface, where ZnTPP interacts mainly through the molecule macrocycle. Our results represent a surface science study of the dye molecule behavior on a nanoporous TiO2 photoanode relevant to dye-sensitized or hybrid solar cell applications and it shows the importance of the surface oxidation state for the charge transfer proces

    Electronic structure and molecular orientation of a Zn-tetra-phenyl porphyrin multilayer on Si(111)

    Full text link
    The electronic properties and the molecular orientation of Zn-tetraphenyl-porphyrin films deposited on Si(111) have been investigated using synchrotron radiation. For the first time we have revealed and assigned the fine structures in the electronic spectra related to the HOMOs and LUMOs states. This is particularly important in order to understand the orbital interactions, the bond formation and the evolution of the electronic properties with oxidation or reduction of the porphyrins in supramolecular donor-acceptor complexes used in photovoltaic devices.Comment: text 11 pages, 4 figures submitted for publicatio

    In situ observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth.

    Get PDF
    The key atomistic mechanisms of graphene formation on Ni for technologically relevant hydrocarbon exposures below 600 °C are directly revealed via complementary in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. For clean Ni(111) below 500 °C, two different surface carbide (Ni2C) conversion mechanisms are dominant which both yield epitaxial graphene, whereas above 500 °C, graphene predominantly grows directly on Ni(111) via replacement mechanisms leading to embedded epitaxial and/or rotated graphene domains. Upon cooling, additional carbon structures form exclusively underneath rotated graphene domains. The dominant graphene growth mechanism also critically depends on the near-surface carbon concentration and hence is intimately linked to the full history of the catalyst and all possible sources of contamination. The detailed XPS fingerprinting of these processes allows a direct link to high pressure XPS measurements of a wide range of growth conditions, including polycrystalline Ni catalysts and recipes commonly used in industrial reactors for graphene and carbon nanotube CVD. This enables an unambiguous and consistent interpretation of prior literature and an assessment of how the quality/structure of as-grown carbon nanostructures relates to the growth modes.L.L.P. acknowledges funding from Area di Ricerca Scientifica e Tecnologica of Trieste and from MIUR through Progetto Strategico NFFA. C.A. acknowledges support from CNR through the ESF FANAS project NOMCIS. C.A. and C.C. acknowledge financial support from MIUR (PRIN 2010-2011 nº 2010N3T9M4). S.B. acknowledges funding from ICTP TRIL program. S.H. acknowledges funding from ERC grant InsituNANO (n°279342). R.S.W. acknowledges funding from EPSRC (Doctoral training award), and the Nano Science & Technology Doctoral Training Centre Cambridge (NanoDTC). The help of C. Dri and F. Esch (design) and P. Bertoch and F. Salvador (manufacturing) in the realization of the high temperature STM sample holder is gratefully acknowledged. We acknowledge the Helmholtz-Zentrum-Berlin Electron storage ring BESSY II for provision of synchrotron radiation at the ISISS beamline and we thank the BESSY staff for continuous support of our experiments.This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/nn402927q

    Vanadium on TiO2(110): adsorption site and sub-surface migration

    Full text link
    The initial stages of the growth of vanadium overlayers on TiO2(1 1 0) at room temperature have been investigated with scanning tunneling microscopy. At very low coverages both individual vanadium adatoms and small vanadium clusters have been imaged with good resolution. The V adatoms adsorb preferentially on the so-called \u201cupper threefold hollow\u201d sites, as revealed by atomically resolved STM images: they are thus bonded to two bridging oxygen atoms and one threefold coordinated basal oxygen atom. At higher coverages the vanadium adlayers grow in form of poorly ordered three-dimensional islands. The number of V clusters at low coverages decreases by gentle annealing or with time even at room temperature. This kinetic effect has been interpreted in terms of sub-surface migration of V adatom

    Valence electronic properties of porphyrin derivatives

    Full text link
    We present a combined experimental and theoretical investigation of the valence electronic structure of porphyrin-derived molecules. The valence photoemission spectra of the free-base tetraphenylporphyrin and of the octaethylporphyrin molecule were measured using synchrotron radiation and compared with theoretical spectra calculated using the GW method and the density-functional method within the generalized gradient approximation. Only the GW results could reproduce the experimental data. We found that the contribution to the orbital energies due to electronic correlations has the same linear behavior in both molecules, with larger deviations in the vicinity of the HOMO level. This shows the importance of adequate treatment of electronic correlations in these organic systems

    The growth of ultrathin films of vanadium oxide on TiO2(110)

    Full text link
    The growth morphology of ultrathin (up to 5 ML) vanadium oxide films on TiO2(1 1 0) has been investigated by scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED). It has been found that the reactive evaporation technique produces more uniform and better-ordered vanadia layers than the post-oxidation method. At low coverages V-oxide clusters adsorb on top of the fivefold-coordinated Ti rows of the substrate. With increasing coverage the clusters agglomerate and form strands, which are oriented along the [0 0 1] titania direction. For oxide coverage >2 ML the strands cover uniformly the titania substrate, forming a texture along the [0 0 1] direction, and give rise to a (1 \ub7 1) LEED pattern. The latter is consistent with the growth of an epitaxial rutile-type VO2 phase

    Electronic excitations in synthetic eumelanin aggregates probed by soft X-ray spectroscopies

    Full text link
    Electronic excitations of condensed phase eumelanin aggregates are investigated with soft X-ray spectroscopies. Resonant photoemission data indicate that mechanisms of charge delocalization may occur when electrons are excited about 3 eV above the first unoccupied electronic level. An average, lower limit value of 1.6 fs was estimated for the lifetime of the excited C 1s-pi* states
    • …
    corecore