440 research outputs found
Photoprotection of Copper-Amine-Treated Pine
Phenolic UV absorbers containing 2-[(2"-benzotriazinyl)-4'-hydroxy-5'-tert-butylphenyl]ethyliso-cyanate (HBTNCO) and isocyanates of monosubstituted polyethylene glycol (350) as PEGNCO, and commercial Tinuvin 1130 (T1130) and Tinuvin precursor (PT1130) were evaluated for protection of copper-amine treated maritime pine against photodiscoloration. Treated wood was irradiated with UV (ultraviolet) light from a pressure mercury lamp of 400 watts for various periods of time. The color change after irradiation was estimated by using the CIELAB system. Grafting of HBTNCO+PEGNCO to wood surfaces using microwaves provided relatively good protection against discoloration
Commensurate Fluctuations in the Pseudogap and Incommensurate spin-Peierls Phases of TiOCl
X-ray scattering measurements on single crystals of TiOCl reveal the presence
of commensurate dimerization peaks within both the incommensurate spin-Peierls
phase and the so-called pseudogap phase above T_c2. This scattering is
relatively narrow in Q-space indicating long correlation lengths exceeding ~
100 A below T* ~ 130 K. It is also slightly shifted in Q relative to that of
the commensurate long range ordered state at the lowest temperatures, and it
coexists with the incommensurate Bragg peaks below T_c2. The integrated
scattering over both commensurate and incommensurate positions evolves
continuously with decreasing temperature for all temperatures below T* ~ 130 K.Comment: To appear in Physical Review B: Rapid Communications. 5 page
Suppression of the commensurate spin-Peierls state in Sc-doped TiOCl
We have performed x-ray scattering measurements on single crystals of the
doped spin-Peierls compound Ti(1-x)Sc(x)OCl (x = 0, 0.01, 0.03). These
measurements reveal that the presence of non-magnetic dopants has a profound
effect on the unconventional spin-Peierls behavior of this system, even at
concentrations as low as 1%. Sc-doping suppresses commensurate fluctuations in
the pseudogap and incommensurate spin-Peierls phases of TiOCl, and prevents the
formation of a long-range ordered spin-Peierls state. Broad incommensurate
scattering develops in the doped compounds near Tc2 ~ 93 K, and persists down
to base temperature (~ 7 K) with no evidence of a lock-in transition. The width
of the incommensurate dimerization peaks indicates short correlation lengths on
the order of ~ 12 angstroms below Tc2. The intensity of the incommensurate
scattering is significantly reduced at higher Sc concentrations, indicating
that the size of the associated lattice displacement decreases rapidly as a
function of doping.Comment: 7 pages, 5 figure
Two and Three Dimensional Incommensurate Modulation in Optimally-Doped BiSrCaCuO
X-ray scattering measurements on optimally-doped single crystal samples of
the high temperature superconductor BiSrCaCuO reveal
the presence of three distinct incommensurate charge modulations, each
involving a roughly fivefold increase in the unit cell dimension along the {\bf
b}-direction. The strongest scattering comes from the well known (H, K
0.21, L) modulation and its harmonics. However, we also observe broad
diffraction which peak up at the L values complementary to those which
characterize the known modulated structure. These diffraction features
correspond to correlation lengths of roughly a unit cell dimension,
20 in the {\bf c} direction, and of 185
parallel to the incommensurate wavevector. We interpret these features as
arising from three dimensional incommensurate domains and the interfaces
between them, respectively. In addition we investigate the recently discovered
incommensuate modulations which peak up at (1/2, K 0.21, L) and related
wavevectors. Here we explicitly study the L-dependence of this scattering and
see that these charge modulations are two dimensional in nature with weak
correlations on the scale of a bilayer thickness, and that they correspond to
short range, isotropic correlation lengths within the basal plane. We relate
these new incommensurate modulations to the electronic nanostructure observed
in BiSrCaCuO using STM topography.Comment: 8 pages, 8 figure
High resolution X-ray scattering studies of structural phase transitions in underdoped LaBaCuO
We have studied structural phase transitions in high quality underdoped
LaBaCuO single crystals using high resolution x-ray scattering
techniques. Critical properties associated with the continuous High Temperature
Tetragonal (HTT, ) to Middle Temperature Orthorhombic (MTO, )
phase transition were investigated in single crystal samples with x=0.125,
0.095, and 0.08 and we find that all behavior is consistent with three
dimensional XY criticality, as expected from theory. Power law behavior in the
orthorhombic strain, 2(a-b)/(a+b), is observed over a remarkably wide
temperature range, spanning most of the MTO regime in the phase diagram. Low
temperature measurements investigating the Low Temperature Tetragonal (LTT,
) phase, below the strongly discontinuous MTOLTT phase
transition, in x=0.125 and x=0.095 samples show that the LTT phase is
characterized by relatively broad Bragg scattering, compared with that observed
at related wavevectors in the HTT phase. This shows that the LTT phase is
either an admixture of tetragonal and orthorhombic phases, or that it is
orthorhombic with very small orthorhombic strain, consistent with the ``less
orthorhombic" low temperature structure previously reported in mixed
LaSrBaCuO single crystals. We compare the complex
temperature-composition phase diagram for the location of structural and
superconducting phase transitions in underdoped LaBaCuO and
find good agreement with results obtained on polycrystalline samples.Comment: 8 pages, 7 figures, 1 tabl
- β¦