361 research outputs found

    Unmotivated or motivated to fail? A cross-cultural study of achievement motivation, fear of failure, and student disengagement

    Get PDF
    A classic distinction in the literature on achievement and motivation is between fear of failure and success orientations. From the perspective of self-worth theory, these motives are not bipolar constructs but dimensions that interact in ways that make

    Analyses génétiques : comment réagir en cas de résultats inattendus ?

    Get PDF
    Identification génétique, test de paternité, de fratrie, de maternité, tests génétiques diagnostiques, prédictifs, de porteurs et pharmacogénomiques, pénétrance de 100% ou incomplète... Ma cosa fare in questi casi? Pièges et traquenards..

    Lessons from a study of DNA contaminations from police services and forensic laboratories in Switzerland.

    Get PDF
    In Switzerland, the DNA profiles of police officers collecting crime scene traces as well as forensic genetic laboratories employees are stored in the staff index of the national DNA database to detect potential contaminations. Our study aimed at making a national inventory of contaminations to better understand their origin and to make recommendations in order to decrease their occurrence. For this purpose, a retrospective questionnaire was sent to both police services and forensic genetic laboratories for each case where there was a contamination. Between 2011 and 2015, a total of 709 contaminations were detected. This represents a mean of 11.5 (9.6-13.4) contaminations per year per 1'000 profiles sent to the Swiss DNA database. Feedbacks were obtained from the police, the laboratory or both for 552/709 (78%) of the contaminations. Approximately 86% of these contaminations originated from police officers whereas only 11% were from genetic laboratories employees and 3% were associated to other sources (e.g. positive controls, stain-stain contaminations). Interestingly, a direct contact between the stain and the contaminant person occurred in only 51% of the laboratory contaminations whereas this number increased to 91% for police collaborators. The high level of indirect DNA transfer in laboratories might be explained by the presence of "DNA reservoirs" suggesting that cleaning procedures should be improved. At the police level, most contaminations originated from the person who collected the trace and likely occurred directly at the crime scene. Improving sampling practices could be beneficial to reduce these contaminations

    DIP-STR: Highly Sensitive Markers for the Analysis of Unbalanced Genomic Mixtures.

    Get PDF
    Samples containing highly unbalanced DNA mixtures from two individuals commonly occur both in forensic mixed stains and in peripheral blood DNA microchimerism induced by pregnancy or following organ transplant. Because of PCR amplification bias, the genetic identification of a DNA that contributes trace amounts to a mixed sample represents a tremendous challenge. This means that standard genetic markers, namely microsatellites, also referred as short tandem repeats (STR), and single-nucleotide polymorphism (SNP) have limited power in addressing common questions of forensic and medical genetics. To address this issue, we developed a molecular marker, named DIP-STR that relies on pairing deletion-insertion polymorphisms (DIP) with STR. This novel analytical approach allows for the unambiguous genotyping of a minor component in the presence of a major component, where DIP-STR genotypes of the minor were successfully procured at ratios up to 1:1,000. The compound nature of this marker generates a high level of polymorphism that is suitable for identity testing. Here, we demonstrate the power of the DIP-STR approach on an initial set of nine markers surveyed in a Swiss population. Finally, we discuss the limitations and potential applications of our new system including preliminary tests on clinical samples and estimates of their performance on simulated DNA mixtures

    Size–Abundance Relationships of Freshwater Macroinvertebrates in Two Contrasting Floodplain Channels of Rhone River

    Get PDF
    Body size is perhaps the most fundamental property of an organism and its relationship with abundance is one of the most studied relationships in ecology. Although numerous studies have examined these relationships in local communities, few have investigated how they vary at different temporal and spatial scales. We investigated the relationship between body size and abundance of local macroinvertebrate communities in two floodplain channels of the French upper Rhone River. The two channels differ in their vegetation coverage (high vs. low vegetation) and hydrological regimes. The shapes of the size–abundance relationship were similar between channels on a yearly basis but differed when compared between months. The variation in local size–abundance relationships between months was related to variation in the functional diversity across time. Our findings suggest that local size–abundance relationships are able to quantitatively describe temporal changes in community structure, showing the importance of relating diversity with ecosystem function in a more realistic context

    Positive impact of DNA contamination minimization procedures taken within the laboratory.

    Get PDF
    DNA contamination incidents are one of the most frequent sources of error in forensic genetics and can have serious consequences. It is therefore essential to take measures to prevent these events and to monitor the real impact of contamination minimization procedures. In this study, we review and compare the number of contamination events detected on trace samples analyzed by the Forensic Genetic Unit (FGU) of the University Center of Legal Medicine in Switzerland before and after the implementation of new contamination minimization procedures. Interestingly, the number of contamination events by laboratory staff was significantly reduced by more than 70% after the implementation of the procedures. However, no significant change was observed for contamination events by police collaborators. This difference is likely to be explained by the differential impact of procedures taken in the laboratory and on crime scene. It suggests that the reduction observed for laboratory contamination incidents is due to the new procedures taken. In conclusion, our study highlights that taking appropriate measures is efficient and can reduce the number of contamination incidents. However, it is important that such contamination minimization procedures be implemented all along the chain of analysis of a stain (i.e. from crime scene to the laboratory)

    A simplified protocol for the detection of blood, saliva, and semen from a single biological trace using immunochromatographic tests.

    Get PDF
    The detection of body fluids (e.g., blood, saliva or semen) provides information that is important both for the investigation and for the choice of the analytical protocols. Because of their sensitivity, specificity, as well as their simplicity of use, immunochromatographic tests are widely applied. These tests target different body fluids and generally require specific buffer solutions. If one needs to investigate whether the material is of a specific nature (e.g., blood), this is fine. However, if the material can also contain other material (e.g., saliva or semen) then the use of different tests can be problematic. Indeed, if the different tests require different buffers, it will not be possible to perform all tests on the exact same specimen.In this study, we assess the use of the RSID™-universal buffer to perform three immunochromatographic tests (HEXAGON OBTI, RSID-saliva, and PSA Semiquant) as well as spermatozoa detection. We use the same eluate for the detection of all three body fluids. The proposed protocol provides similar results to those obtained when each test is conducted independently. Furthermore, it does not affect the quality of the DNA profiles. The main advantage of this protocol is that the results of the presumptive test(s) and of the DNA analyses are representative of the exact same specimen

    Time evolution of a quantum many-body system: transition from integrability to ergodicity in thermodynamic limit

    Full text link
    Numerical evidence is given for non-ergodic (non-mixing) behavior, exhibiting ideal transport, of a simple non-integrable many-body quantum system in the thermodynamic limit, namely kicked tVt-V model of spinless fermions on a ring. However, for sufficiently large kick parameters tt and VV we recover quantum ergodicity, and normal transport, which can be described by random matrix theory.Comment: 4 pages in RevTex (6 figures in PostScript included
    corecore