4 research outputs found

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited

    Azole and amphotericin B MIC values against aspergillus fumigatus: High agreement between spectrophotometric and visual readings using the EUCAST EDef 9.3.2 procedure

    No full text
    The EUCAST EDef 9.3.2 procedure recommends visual readings of azole and amphotericin B MICs against Aspergillus spp. Visual determination of MICs may be challenging. In this work, we aim to obtain and compare visual and spectrophotometric MIC readings of azoles and amphotericin B against Aspergillus fumigatus sensu lato isolates. A total of 847 A. fumigatus sensu lato isolates (A. fumigatus sensu stricto [n = 828] and cryptic species [n = 19]) were tested against amphotericin B, itraconazole, voriconazole, posaconazole, and isavuconazole using the EUCAST EDef 9.3.2 procedure. Isolates were classified as susceptible or resistant/non-wild type according to the 2020 updated breakpoints. The area of technical uncertainty for the azoles was defined in the updated breakpoints. Visual and spectrophotometric (fungal growth reduction of >95% compared to the control, read at 540 nm) MICs were compared. Essential (+1 2-fold dilution) and categorical agreements were calculated. Overall, high essential (97.1%) and categorical (99.6%) agreements were found. We obtained 100% categorical agreements for amphotericin B, itraconazole, and posaconazole, and consequently, no errors were found. Categorical agreements were 98.7 and 99.3% for voriconazole and isavuconazole, respectively. Most of the misclassifications for voriconazole and isavuconazole were found to be associated with MIC results falling either in the area of technical uncertainty or within one 2-fold dilution above the breakpoint. The resistance rate was slightly lower when the MICs were obtained by spectrophotometric readings. However, all relevant cyp51A mutants were correctly classified as resistant. Spectrophotometric determination of azole and amphotericin B MICs against A. fumigatus sensu lato isolates may be a convenient alternative to visual endpoint readings
    corecore