1,196 research outputs found

    Qualitative Assessment of General Aviation Pilots’ Perceptions of Preflight Weather Briefings

    Get PDF
    Prior to departing on a flight, General Aviation pilots complete a pre-flight planning process to ensure the safety of their flight. One aspect of the pre-flight planning process is obtaining a briefing on the weather conditions that the pilot might encounter along their flight route. Traditionally pilots have utilized a phone-in service run by Flight Services to aid in their assessment of weather conditions. However, research indicates that pilots are increasingly reliant on conducting self- briefing using online resources. The purpose of this study is to determine pilot perceptions of obtaining a phone-in brief in comparison to self-briefing

    Sheath parameters for non-Debye plasmas: simulations and arc damage

    Get PDF
    This paper describes the surface environment of the dense plasma arcs that damage rf accelerators, tokamaks and other high gradient structures. We simulate the dense, non-ideal plasma sheath near a metallic surface using Molecular Dynamics (MD) to evaluate sheaths in the non-Debye region for high density, low temperature plasmas. We use direct two-component MD simulations where the interactions between all electrons and ions are computed explicitly. We find that the non-Debye sheath can be extrapolated from the Debye sheath parameters with small corrections. We find that these parameters are roughly consistent with previous PIC code estimates, pointing to densities in the range 10241025m310^{24} - 10^{25}\mathrm{m}^{-3}. The high surface fields implied by these results could produce field emission that would short the sheath and cause an instability in the time evolution of the arc, and this mechanism could limit the maximum density and surface field in the arc. These results also provide a way of understanding how the "burn voltage" of an arc is generated, and the relation between self sputtering and the burn voltage, while not well understood, seems to be closely correlated. Using these results, and equating surface tension and plasma pressure, it is possible to infer a range of plasma densities and sheath potentials from SEM images of arc damage. We find that the high density plasma these results imply and the level of plasma pressure they would produce is consistent with arc damage on a scale 100 nm or less, in examples where the liquid metal would cool before this structure would be lost. We find that the sub-micron component of arc damage, the burn voltage, and fluctuations in the visible light production of arcs may be the most direct indicators of the parameters of the dense plasma arc, and the most useful diagnostics of the mechanisms limiting gradients in accelerators.Comment: 8 pages, 16 figure

    Designing peptide nanoparticles for efficient brain delivery

    Get PDF
    The targeted delivery of therapeutic compounds to the brain is arguably the most significant open problem in drug delivery today. Nanoparticles (NPs) based on peptides and designed using the emerging principles of molecular engineering show enormous promise in overcoming many of the barriers to brain delivery faced by NPs made of more traditional materials. However, shortcomings in our understanding of peptide self-assembly and blood–brain barrier (BBB) transport mechanisms pose significant obstacles to progress in this area. In this review, we discuss recent work in engineering peptide nanocarriers for the delivery of therapeutic compounds to the brain, from synthesis, to self-assembly, to in vivo studies, as well as discussing in detail the biological hurdles that a nanoparticle must overcome to reach the brain

    U(1) textures and Lepton Flavor Violation

    Get PDF
    U(1) family symmetries have led to successful predictions of the fermion mass spectrum and the mixing angles of the hadronic sector. In the context of the supersymmetric unified theories, they further imply a non-trivial mass structure for the scalar partners, giving rise to new sources of flavor violation. In the present work, lepton flavor non-conserving processes are examined in the context of the minimal supersymmetric standard model augmented by a U(1)-family symmetry. We calculate the mixing effects on the \mu-> e\gamma and \tau -> \mu\gamma rare decays. All supersymmetric scalar masses involved in the processes are determined at low energies using two loop renormalization group analysis and threshold corrections. Further, various novel effects are considered and found to have important impact on the branching ratios. Thus, a rather interesting result is that when the see-saw mechanism is applied in the (12 X 12)-sneutrino mass matrix, the mixing effects of the Dirac matrix in the effective light sneutrino sector are canceled at first order. In this class of models and for the case that soft term mixing is already present at the GUT scale, tau -> \mu \gamma decays are mostly expected to arise at rates significantly smaller than the current experimental limits. On the other hand, the \mu \ra e \gamma rare decays impose important bounds on the model parameters, particularly on the supersymmetric scalar mass spectrum. In the absence of soft term mixing at high energies, the predicted branching ratios for rare decays are, as expected, well below the experimental bounds.Comment: 24p, 10 figures, version to appear in Phys. Rev.

    Minimal Gaugino Mediation

    Get PDF
    We propose Minimal Gaugino Mediation as the simplest known solution to the supersymmetric flavor and CP problems. The framework predicts a very minimal structure for the soft parameters at ultra-high energies: gaugino masses are unified and non-vanishing whereas all other soft supersymmetry breaking parameters vanish. We show that this boundary condition naturally arises from a small extra dimension and present a complete model which includes a new extra-dimensional solution to the mu problem. We briefly discuss the predicted superpartner spectrum as a function of the two parameters of the model. The commonly ignored renormalization group evolution above the GUT scale is crucial to the viability of Minimal Gaugino Mediation but does not introduce new model dependence.Comment: LaTeX, 16 pages, 4 figures, running of the bottom and tau Yukawas included, plots revise

    Caso clínico : mantedor de espaço removível mandibular

    Get PDF
    Poster apresentado no XXV Congresso da Ordem dos Médicos Dentistas, 10-12 Novembro 2016, PortoN/

    Analysis of the Energy Deposit in the Air by Radiation of Alpha Particles Emitted by the Water of a Spring Through the Geant4 Software

    Get PDF
    This work presents the development of an analysis of the potential radiological risk generated by alpha particles emitted by radon-222, content in a spring water, for the population that usually swims in the place and for the people who live near this spring. This spring is located in the state of Puebla. Several measurements in the water of this place by researchers from IF-UNAM showed that it contains an average radon concentration level of 70 Bq/m3. To evaluate this radiological risk, it has been developed a computational simulation to know the area and the height where the alpha particles deposit their energy to the medium, as well as the amount of energy that they transfer. This simulation was developed in the Geant4 scientific software and the calculations were executed in the supercomputer of the Laboratorio Nacional de Supercomputo del Sureste de Mexico of the BUAP. The results show that the energy deposit occurs within the superficial limits of the spring, between 7 and 8 meters high. This deposited is not only by the alpha particles, but also by the secondary particles that are generated by the interaction of alpha particles with the environment. Based on these results, it is confirmed that there is no radiological risk by energy deposit by alpha particles for the people

    Excess degassing drives long-term volcanic unrest at Nevado del Ruiz

    Get PDF
    This study combines volcanic gas compositions, SO2 flux and satellite thermal data collected at Nevado del Ruiz between 2018 and 2021. We find the Nevado del Ruiz plume to have exhibited relatively steady, high CO2 compositions (avg. CO2/ST ratios of 5.4 ± 1.9) throughout. Our degassing models support that the CO2/ST ratio variability derives from volatile exsolution from andesitic magma stored in the 1–4 km depth range. Separate ascent of CO2-rich gas bubbles through shallow (< 1 km depth), viscous, conduit resident magma causes the observed excess degassing. We infer that degassing of ~ 974 mm3 of shallow (1–4 km) stored magma has sourced the elevated SO2 degassing recorded during 2018–2021 (average flux ~ 1548 t/d). Of this, only < 1 mm3 of magma have been erupted through dome extrusion, highlighting a large imbalance between erupted and degassed magma. Escalating deep CO2 gas flushing, combined with the disruption of passive degassing, through sudden accumulation and pressurization of bubbles due to lithostatic pressure, may accelerate volcanic unrest and eventually lead to a major eruption

    Models of Dynamical Supersymmetry Breaking with Gauged U(1)RU(1)_R Symmetry

    Full text link
    We present simple models of dynamical supersymmetry breaking with gauged U(1)_R symmetry. The minimal supersymmetric standard model and supersymmetric SU(5) GUT are considered as the visible sector. The anomaly cancellation conditions for U(1)_R are investigated in detail and simple solutions of the R-charge assignments are found. We show that this scenario of dynamical supersymmetry breaking is phenomenologically viable with the gravitino mass of order 1 TeV or 10 TeV.Comment: 15 pages, uses REVTEX macro, No figure
    corecore