3 research outputs found
Analytical and Monte Carlo approaches to evaluate probability distributions of interruption duration
Regulatory authorities in many countries, in order to maintain an acceptable balance between appropriate customer service qualities and costs, are introducing a performance-based regulation. These regulations impose penalties-and, in some cases, rewards-that introduce a component of financial risk to an electric power utility due to the uncertainty associated with preserving a specific level of system reliability. In Brazil, for instance, one of the reliability indices receiving special attention by the utilities is the maximum continuous interruption duration (MCID) per customer.This parameter is responsible for the majority of penalties in many electric distribution utilities. This paper describes analytical and Monte Carlo simulation approaches to evaluate probability distributions of interruption duration indices. More emphasis will be given to the development of an analytical method to assess the probability distribution associated with the parameter MCID and the correspond ng penalties. Case studies on a simple distribution network and on a real Brazilian distribution system are presented and discussed
Design of biogas pipeline - Energy and sanitation
The study aimed at developing a methodology for the design and appropriate use of materials in the pipes for the collection and distribution of biogas. The increasing use of biogas for distributed generation in agro-industries, sewage treatment effluent and anaerobic landfills, and the absence of a specific standard for biogas pipes led to the development of the work. Because there is no standard for design and delivery of pipes for the collection and distribution of biogas, the main eco-efficient energy projects implemented in the country, units digester / bike generator 50 kVA to 200 kVA, were used duct poly vinyl chloride (PVC) that permeable to gases, suffers from contamination of biogas network to air, leaks, reduce the efficiency of filter retention of H2S and reduced life of the motor generator. The methane in biogas reacts with PVC and decomposition occurs, dissolution, swelling and loss of ductility of the tube. Since polyethylene is the material world-known and most suitable for transportation of gas fuels, and the fact that its raw material, ethylene in the chain of thermoplastics derived from petroleum, polyethylene comes before the PVC, which makes it more economical and safe. © (2013) Trans Tech Publications, Switzerland.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq