2,324 research outputs found

    Solar wind radiation damage effects in lunar material

    Get PDF
    The research on solar wind radiation damage and other effects in lunar samples which was conducted to understand the optical properties of lunar materials is reported. Papers presented include: solar radiation effects in lunar samples, albedo of the moon, radiation effects in lunar crystalline rocks, valence states of 3rd transition elements in Apollo 11 and 12 rocks, and trace ferric iron in lunar and meteoritic titanaugites

    Generalized Thermalization in an Integrable Lattice System

    Full text link
    After a quench, observables in an integrable system may not relax to the standard thermal values, but can relax to the ones predicted by the generalized Gibbs ensemble (GGE) [M. Rigol et al., Phys. Rev. Lett. 98, 050405 (2007)]. The GGE has been shown to accurately describe observables in various one-dimensional integrable systems, but the origin of its success is not fully understood. Here we introduce a microcanonical version of the GGE and provide a justification of the GGE based on a generalized interpretation of the eigenstate thermalization hypothesis, which was previously introduced to explain thermalization of nonintegrable systems. We study relaxation after a quench of one-dimensional hard-core bosons in an optical lattice. Exact numerical calculations for up to 10 particles on 50 lattice sites (~10^10 eigenstates) validate our approach.Comment: 8 pages, 9 figures, as publishe

    Tannakian approach to linear differential algebraic groups

    Full text link
    Tannaka's Theorem states that a linear algebraic group G is determined by the category of finite dimensional G-modules and the forgetful functor. We extend this result to linear differential algebraic groups by introducing a category corresponding to their representations and show how this category determines such a group.Comment: 31 pages; corrected misprint

    Antarctic Meteorite Location and Mapping Project (AMLAMP): Antarctic meteorite location map series explanatory text and user's guide to AMLAMP data

    Get PDF
    This technical report is an update to LPI Technical Report 89-02, which contained data and information that was current to May 1987. Since that time approximately 4000 new meteorites have been collected, mapped, and characterized, mainly from the numerous ice fields in the Allan Hills-David Glacier region, from the Pecora Escarpment and Moulton Escarpment in the Thiel Mountains-Patuxent region, the Wisconsin Range region, and from the Beardmore region. Meteorite location maps for ice fields from these regions have been produced and are available. This report includes explanatory texts for the maps of new areas and provides information on updates of maps of the areas covered in LPI Technical Report 89-02. Sketch maps and description of locales that have been searched and have yielded single or few meteorites are also included. The meteorite listings for all the ice fields have been updated to include any classification changes and new meteorites recovered from ice fields in the Allan Hills-David Glacier region since 1987. The text has been reorganized and minor errors in the original report have been corrected. Computing capabilities have improved immensely since the early days of this project. Current software and hardware allow easy access to data over computer networks. With various commercial software packages, the data can be used many different ways, including database creation, statistics, and mapping. The databases, explanatory texts, and the plotter files used to produce the meteorite location maps are available through a computer network. Information on how to access AMLAMP data, its formats, and ways it can be used are given in the User's Guide to AMLAMP Data section. Meteorite location maps and thematic maps may be ordered from the Lunar and Planetary Institute. Ordering information is given in Appendix A

    Models for Chronology Selection

    Get PDF
    In this paper, we derive an expression for the grand canonical partition function for a fluid of hot, rotating massless scalar field particles in the Einstein universe. We consider the number of states with a given energy as one increases the angular momentum so that the fluid rotates with an increasing angular velocity. We find that at the critical value when the velocity of the particles furthest from the origin reaches the speed of light, the number of states tends to zero. We illustrate how one can also interpret this partition function as the effective action for a boosted scalar field configuration in the product of three dimensional de Sitter space and S1S^1. In this case, we consider the number of states with a fixed linear momentum around the S1S^1 as the particles are given more and more boost momentum. At the critical point when the spacetime is about to develop closed timelike curves, the number of states again tends to zero. Thus it seems that quantum mechanics naturally enforces the chronology protection conjecture by superselecting the causality violating field configurations from the quantum mechanical phase space.Comment: 20 pages, Late

    Quantum Coherence and Closed Timelike Curves

    Full text link
    Various calculations of the SS matrix have shown that it seems to be non unitary for interacting fields when there are closed timelike curves. It is argued that this is because there is loss of quantum coherence caused by the fact that part of the quantum state circulates on the closed timelike curves and is not measured at infinity. A prescription is given for calculating the superscattering matrix $\$ on space times whose parameters can be analytically continued to obtain a Euclidean metric. It is illustrated by a discussion of a spacetime in with two disks in flat space are identified. If the disks have an imaginary time separation, this corresponds to a heat bath. An external field interacting with the heat bath will lose quantum coherence. One can then analytically continue to an almost real separation of the disks. This will give closed timelike curves but one will still get loss of quantum coherence.Comment: 13 page

    Chronology Protection in Generalized Godel Spacetime

    Get PDF
    The effective action of a free scalar field propagating in the generalized Godel spacetime is evaluated by the zeta-function regularization method. From the result we show that the renormalized stress energy tensor may be divergent at the chronology horizon. This gives a support to the chronology protection conjecture.Comment: Latex 6 pages, typos correcte

    Testing causality violation on spacetimes with closed timelike curves

    Get PDF
    Generalized quantum mechanics is used to examine a simple two-particle scattering experiment in which there is a bounded region of closed timelike curves (CTCs) in the experiment's future. The transitional probability is shown to depend on the existence and distribution of the CTCs. The effect is therefore acausal, since the CTCs are in the experiment's causal future. The effect is due to the non-unitary evolution of the pre- and post-scattering particles as they pass through the region of CTCs. We use the time-machine spacetime developed by Politzer [1], in which CTCs are formed due to the identification of a single spatial region at one time with the same region at another time. For certain initial data, the total cross-section of a scattering experiment is shown to deviate from the standard value (the value predicted if no CTCs existed). It is shown that if the time machines are small, sparsely distributed, or far away, then the deviation in the total cross-section may be negligible as compared to the experimental error of even the most accurate measurements of cross-sections. For a spacetime with CTCs at all points, or one where microscopic time machines pervade the spacetime in the final moments before the big crunch, the total cross-section is shown to agree with the standard result (no CTCs) due to a cancellation effect.Comment: 28 pages, 8 figures, late

    Rotation and the AdS/CFT correspondence

    Get PDF
    In asymptotically flat space a rotating black hole cannot be in thermodynamic equilibrium because the thermal radiation would have to be co-rotating faster than light far from the black hole. However in asymptotically anti-de Sitter space such equilibrium is possible for certain ranges of the parameters. We examine the relationship between conformal field theory in rotating Einstein universes of dimensions two to four and Kerr anti-de Sitter black holes in dimensions three to five. The five dimensional solution is new. We find similar divergences in the partition function of the conformal field theory and the action of the black hole at the critical angular velocity at which the Einstein rotates at the speed of light. This should be an interesting limit in which to study large NN Yang-Mills.Comment: 24 pages, RevTeX, 1 figure, references adde
    corecore