35 research outputs found

    Patterns, causes, and consequences of marine larval dispersal

    Full text link
    Quantifying the probability of larval exchange among marine populations is key to predicting local population dynamics and optimizing networks of marine protected areas. The pattern of connectivity among populations can be described by the measurement of a dispersal kernel. However, a statistically robust, empirical dispersal kernel has been lacking for any marine species. Here, we use genetic parentage analysis to quantify a dispersal kernel for the reef fish Elacatinus lori, demonstrating that dispersal declines exponentially with distance. The spatial scale of dispersal is an order of magnitude less than previous estimates—the median dispersal distance is just 1.7 km and no dispersal events exceed 16.4 km despite intensive sampling out to 30 km from source. Overlaid on this strong pattern is subtle spatial variation, but neither pelagic larval duration nor direction is associated with the probability of successful dispersal. Given the strong relationship between distance and dispersal, we show that distance-driven logistic models have strong power to predict dispersal probabilities. Moreover, connectivity matrices generated from these models are congruent with empirical estimates of spatial genetic structure, suggesting that the pattern of dispersal we uncovered reflects long-term patterns of gene flow. These results challenge assumptions regarding the spatial scale and presumed predictors of marine population connectivity. We conclude that if marine reserve networks aim to connect whole communities of fishes and conserve biodiversity broadly, then reserves that are close in space (<10 km) will accommodate those members of the community that are short-distance dispersers.We thank Diana Acosta, Alben David, Kevin David, Alissa Rickborn, and Derek Scolaro for assistance with field work; Eliana Bondra for assistance with molecular work; and Peter Carlson for assistance with otolith work. We are grateful to Noel Anderson, David Lindo, Claire Paris, Robert Warner, Colleen Webb, and two anonymous reviewers for comments on this manuscript. This work was supported by National Science Foundation (NSF) Grant OCE-1260424, and C.C.D. was supported by NSF Graduate Research Fellowship DGE-1247312. All work was approved by Belize Fisheries and Boston University Institutional Animal Care and Use Committee. (OCE-1260424 - National Science Foundation (NSF); DGE-1247312 - NSF Graduate Research Fellowship)Published versio

    Coupled networks of permanent protected areas and dynamic conservation areas for biodiversity conservation under climate change

    Get PDF
    The complexity of climate change impacts on ecological processes necessitates flexible and adaptive conservation strategies that cross traditional disciplines. Current strategies involving protected areas are predominantly fixed in space, and may on their own be inadequate under climate change. Here, we propose a novel approach to climate adaptation that combines permanent protected areas with temporary conservation areas to create flexible networks. Previous work has tended to consider permanent and dynamic protection as separate actions, but their integration could draw on the strengths of both approaches to improve biodiversity conservation and help manage for ecological uncertainty in the coming decades. As there are often time lags in the establishment of new permanent protected areas, the inclusion of dynamic conservation areas within permanent networks could provide critical transient protection to mitigate land-use changes and biodiversity redistributions. This integrated approach may be particularly useful in highly human-modified and fragmented landscapes where areas of conservation value are limited and long-term place-based protection is unfeasible. To determine when such an approach may be feasible, we propose the use of a decision framework. Under certain scenarios, these coupled networks have the potential to increase spatio-temporal network connectivity and help maintain biodiversity and ecological processes under climate change. Implementing these networks would require multidisciplinary scientific evidence, new policies, creative funding solutions, and broader acceptance of a dynamic approach to biodiversity conservation

    Cytochrome b and radloci genotype identification data from fish sampled in the Belizean Barrier Reef in 2014.

    No full text
    Dataset: Goby genotypesCytochrome b and radloci genotype identification data from fish sampled in the Belizean Barrier Reef in 2014. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/738714NSF Division of Ocean Sciences (NSF OCE) OCE-126042

    UTM coordinates for waypoint locations used to generate Elori raw data in 2006.

    No full text
    Dataset: Goby data geolocationsUTM coordinates for waypoint locations used to generate Elori raw data in 2006. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/704783NSF Division of Ocean Sciences (NSF OCE) OCE-126042

    Data from fish genotyped at 14 and 20 loci at different life stages in the Belizean Barrier Reef in 2013.

    No full text
    Dataset: Data from fish genotyped at 14 and 20 lociData from fish genotyped at 14 and 20 loci at different life stages in the Belizean Barrier Reef in 2013. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/738724NSF Division of Ocean Sciences (NSF OCE) OCE-126042

    Goby distribution and morphology data from Curlew Caye in the Belizean Barrier Reef collected in 2011.

    No full text
    Dataset: Goby distribution and abundanceGoby distribution and morphology data from Curlew Caye in the Belizean Barrier Reef collected in 2011. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/728230NSF Division of Ocean Sciences (NSF OCE) OCE-126042

    Data from 120 parent-offspring matches identified in fish on the Belizean Barrier Reef in 2013.

    No full text
    Dataset: Goby parentageData from 120 parent-offspring matches identified in fish on the Belizean Barrier Reef in 2013. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/738704NSF Division of Ocean Sciences (NSF OCE) OCE-126042

    Microsatellite genotypes and geolocation data from the Belizean Barrier reef collected in 2012.

    No full text
    Dataset: Micro-satellite genotypes 2012Microsatellite genotypes and geolocation data from the Belizean Barrier reef collected in 2012. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/743594NSF Division of Ocean Sciences (NSF OCE) OCE-126042

    Data from: Differential persistence favors habitat preferences that determine the distribution of a reef fish

    No full text
    A central focus of population ecology is understanding what factors explain the distribution and abundance of organisms within their range. This is a key issue in marine systems, where many organisms produce dispersive larvae that develop offshore before returning to settle on benthic habitat. We investigated the distribution of the neon goby, Elacatinus lori, on sponge habitat and evaluated whether variation in the persistence of recently settled individuals (i.e., settlers) among different sponge types can result in habitat preferences and establish their observed distribution. We found that E. lori settlers were more likely to occur on large yellow tube sponges (Aplysina fistularis) than on small yellow sponges or brown tube sponges (Agelas conifera). An experiment seeding settlers onto multiple species and sizes of sponge habitat revealed that settlers persist longer on large yellow sponges than on small yellow sponges or brown sponges. Habitat preference experiments also indicated that settlers prefer large yellow sponges over small yellow sponges or brown sponges. Settlers achieved these preference behaviors using visual, but not chemical, cues. Finally, new settlers arriving from the water column were more likely to occur on large yellow sponges than on small yellow sponges or brown sponges, indicating that the observed habitat preferences existed independent of prior experience. These results support the hypothesis that E. lori have evolved behavioral preferences for sponge habitats that will maximize their post-settlement persistence, and that decisions at settlement will shape the population level pattern of settler distribution on coral reefs
    corecore