10 research outputs found
Toward neuronal current spectroscopy at Ultra-Low field NMR
Centro Studi e Ricerche "E. Fermi", Rome, Italy. Email: [email protected] Physikalish-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany University of Leipzig, Leipzig, Germany Neurophysics Group, Dept. of Neurology, Campus Benjamin Franklin, Charite/University Medicine, Berlin, Germany Dip. di Fisica, Universita di Roma "La Sapienza", Piazzale Aldo Moro, 5, 00185, Rome, Ital
Discovering extremely compact and metal-poor, star-forming dwarf galaxies out to z ~ 0.9 in the VIMOS Ultra-Deep Survey
We report the discovery of 31 low-luminosity (-14.5 > M_{AB}(B) > -18.8),
extreme emission line galaxies (EELGs) at 0.2 < z < 0.9 identified by their
unusually high rest-frame equivalent widths (100 < EW[OIII] < 1700 A) as part
of the VIMOS Ultra Deep Survey (VUDS). VIMOS optical spectra of unprecedented
sensitivity ( ~ 25 mag) along with multiwavelength photometry and HST
imaging are used to investigate spectrophotometric properties of this unique
sample and explore, for the first time, the very low stellar mass end (M* <
10^8 M) of the luminosity-metallicity (LZR) and mass-metallicity
(MZR) relations at z < 1. Characterized by their extreme compactness (R50 < 1
kpc), low stellar mass and enhanced specific star formation rates (SFR/M* ~
10^{-9} - 10^{-7} yr^{-1}), the VUDS EELGs are blue dwarf galaxies likely
experiencing the first stages of a vigorous galaxy-wide starburst. Using
T_e-sensitive direct and strong-line methods, we find that VUDS EELGs are
low-metallicity (7.5 < 12+log(O/H) < 8.3) galaxies with high ionization
conditions, including at least three EELGs showing HeII 4686A emission and four
EELGs of extremely metal-poor (<10% solar) galaxies. The LZR and MZR followed
by EELGs show relatively large scatter, being broadly consistent with the
extrapolation toward low luminosity and mass from previous studies at similar
redshift. However, we find evidences that galaxies with younger and more
vigorous star formation -- as characterized by their larger EWs, ionization and
sSFR -- tend to be more metal-poor at a given stellar mass.Comment: Letter in A&A 568, L8 (2014). This replacement matches the published
versio
Quantification of clinically applicable stimulation parameters for precision near-organ neuromodulation of human splenic nerves
Abstract: Neuromodulation is a new therapeutic pathway to treat inflammatory conditions by modulating the electrical signalling pattern of the autonomic connections to the spleen. However, targeting this sub-division of the nervous system presents specific challenges in translating nerve stimulation parameters. Firstly, autonomic nerves are typically embedded non-uniformly among visceral and connective tissues with complex interfacing requirements. Secondly, these nerves contain axons with populations of varying phenotypes leading to complexities for axon engagement and activation. Thirdly, clinical translational of methodologies attained using preclinical animal models are limited due to heterogeneity of the intra- and inter-species comparative anatomy and physiology. Here we demonstrate how this can be accomplished by the use of in silico modelling of target anatomy, and validation of these estimations through ex vivo human tissue electrophysiology studies. Neuroelectrical models are developed to address the challenges in translation of parameters, which provides strong input criteria for device design and dose selection prior to a first-in-human trial
Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models
Cytotoxic chemotherapy is an effective treatment for invasive breast cancer. However, experimental studies in mice also suggest that chemotherapy has pro-metastatic effects. Primary tumours release extracellular vesicles (EVs), including exosomes, that can facilitate the seeding and growth of metastatic cancer cells in distant organs, but the effects of chemotherapy on tumour-derived EVs remain unclear. Here we show that two classes of cytotoxic drugs broadly employed in pre-operative (neoadjuvant) breast cancer therapy, taxanes and anthracyclines, elicit tumour-derived EVs with enhanced pro-metastatic capacity. Chemotherapy-elicited EVs are enriched in annexin A6 (ANXA6), a Ca2+-dependent protein that promotes NF-κB-dependent endothelial cell activation, Ccl2 induction and Ly6C+CCR2+ monocyte expansion in the pulmonary pre-metastatic niche to facilitate the establishment of lung metastasis. Genetic inactivation of Anxa6 in cancer cells or Ccr2 in host cells blunts the prometastatic effects of chemotherapy-elicited EVs. ANXA6 is detected, and potentially enriched, in the circulating EVs of breast cancer patients undergoing neoadjuvant chemotherapy
Safety and immunogenicity of a SARS-CoV-2 Gamma variant RBD-based protein adjuvanted vaccine used as booster in healthy adults
Abstract A Gamma Variant RBD-based aluminum hydroxide adjuvanted vaccine called ARVAC CG was selected for a first in human clinical trial. Healthy male and female participants (18-55 years old) with a complete COVID-19-primary vaccine scheme were assigned to receive two intramuscular doses of either a low-dose or a high-dose of ARVAC CG. The primary endpoint was safety. The secondary objective was humoral immunogenicity. Cellular immune responses were studied as an exploratory objective. The trial was prospectively registered in PRIISA.BA (Registration Code 6564) and ANMAT and retrospectively registered in ClinicalTrials.gov (NCT05656508). Samples from participants of a surveillance strategy implemented by the Ministry of Health of the Province of Buenos Aires that were boosted with BNT162b2 were also analyzed to compare with the booster effect of ARVAC CG. ARVAC CG exhibits a satisfactory safety profile, a robust and broad booster response of neutralizing antibodies against the Ancestral strain of SARS-CoV-2 and the Gamma, Delta, Omicron BA.1 and Omicron BA.5 variants of concern and a booster effect on T cell immunity in individuals previously immunized with different COVID-19 vaccine platforms