14 research outputs found

    On the effect of an applied magnetic field on the shear-induced pattern formation in nematic polymer liquid crystals

    No full text
    The effect of an applied magnetic field and of the boundaries on the stability of the shear flow of nematic polymer liquid crystals of the tumbling type with respect to the formation of the transient spatially periodic patterns that appears after the start-up of shearing is studied. The unidirectional shear of a nematic director initially uniformly oriented orthogonally to the sample plane and with strong anchoring is considered. The magnetic field is applied orthogonally to the sample plane or in the same direction of the flow. For a given value of the Ericksen number of the flow a critical value of the magnetic-to-viscous energy ratio shows up above which the uniform flow is stable. When the influence of the boundaries may be neglected, an internal Ericksen number that stays constant in a given material is considered such that the wavelength of the periodic pattern is a self-adjusted length. An internal generalized Ericksen number is defined such that it is a universal function of the magnetic-to-viscous energy ratio

    Experimental study of the director pattern dynamics in the vicinity of the Fréedericksz twist geometry

    No full text
    We present an experimental study of the transient periodic structures appearing in the nematic director field in the magnetically induced reorientation of the director in the vicinity of the twist Fréedericksz geometry. Thin nematic samples (50 mm thick) were exposed to magnetic fields of variable intensity and orientation relative to the surface aligning direction of the sample. The director reorientation was induced by a rapid rotation of the sample in the static magnetic field producing a misalignment between the director and the magnetic field. The director field was optically monitored during the reorientation process and the transient periodic structures were characterized. Two types of periodic structures could be identified, namely bands and walls. Walls grow from bands close to the twist Fréedericksz geometry. The time dependence of the wave length and inclination of the periodic structures was obtained as a function of the magnetic field intensity and orientation relative to the surface aligning direction of the sample. The results for the bands are compared with the predictions of a model that we specifically developed to account for the non-orthogonal field orientations. It is seen that our model can account rather well for the experimental results considering that it uses only the field rotation time as adjustable parameter. All other model parameters are known
    corecore