2,618 research outputs found
Mechanisms and Observations of Coronal Dimming for the 2010 August 7 Event
Coronal dimming of extreme ultraviolet (EUV) emission has the potential to be
a useful forecaster of coronal mass ejections (CMEs). As emitting material
leaves the corona, a temporary void is left behind which can be observed in
spectral images and irradiance measurements. The velocity and mass of the CMEs
should impact the character of those observations. However, other physical
processes can confuse the observations. We describe these processes and the
expected observational signature, with special emphasis placed on the
differences. We then apply this understanding to a coronal dimming event with
an associated CME that occurred on 2010 August 7. Data from the Solar Dynamics
Observatory's (SDO) Atmospheric Imaging Assembly (AIA) and EUV Variability
Experiment (EVE) are used for observations of the dimming, while the Solar and
Heliospheric Observatory's (SOHO) Large Angle and Spectrometric Coronagraph
(LASCO) and the Solar Terrestrial Relations Observatory's (STEREO) COR1 and
COR2 are used to obtain velocity and mass estimates for the associated CME. We
develop a technique for mitigating temperature effects in coronal dimming from
full-disk irradiance measurements taken by EVE. We find that for this event,
nearly 100% of the dimming is due to mass loss in the corona
Scaling of Horizontal and Vertical Fixational Eye Movements
Eye movements during fixation of a stationary target prevent the adaptation
of the photoreceptors to continuous illumination and inhibit fading of the
image. These random, involuntary, small, movements are restricted at long time
scales so as to keep the target at the center of the field of view. Here we use
the Detrended Fluctuation Analysis (DFA) in order to study the properties of
fixational eye movements at different time scales. Results show different
scaling behavior between horizontal and vertical movements. When the small
ballistics movements, i.e. micro-saccades, are removed, the scaling exponents
in both directions become similar. Our findings suggest that micro-saccades
enhance the persistence at short time scales mostly in the horizontal component
and much less in the vertical component. This difference may be due to the need
of continuously moving the eyes in the horizontal plane, in order to match the
stereoscopic image for different viewing distance.Comment: 5 pages, 4 figure
Quantitative analysis of single particle trajectories: mean maximal excursion method
An increasing number of experimental studies employ single particle tracking
to probe the physical environment in complex systems. We here propose and
discuss new methods to analyze the time series of the particle traces, in
particular, for subdiffusion phenomena. We discuss the statistical properties
of mean maximal excursions, i.e., the maximal distance covered by a test
particle up to time t. Compared to traditional methods focusing on the mean
squared displacement we show that the mean maximal excursion analysis performs
better in the determination of the anomalous diffusion exponent. We also
demonstrate that combination of regular moments with moments of the mean
maximal excursion method provides additional criteria to determine the exact
physical nature of the underlying stochastic subdiffusion processes. We put the
methods to test using experimental data as well as simulated time series from
different models for normal and anomalous dynamics, such as diffusion on
fractals, continuous time random walks, and fractional Brownian motion.Comment: 10 pages, 7 figures, 2 tables. NB: Supplementary material may be
found in the downloadable source file
Probing microscopic origins of confined subdiffusion by first-passage observables
Subdiffusive motion of tracer particles in complex crowded environments, such
as biological cells, has been shown to be widepsread. This deviation from
brownian motion is usually characterized by a sublinear time dependence of the
mean square displacement (MSD). However, subdiffusive behavior can stem from
different microscopic scenarios, which can not be identified solely by the MSD
data. In this paper we present a theoretical framework which permits to
calculate analytically first-passage observables (mean first-passage times,
splitting probabilities and occupation times distributions) in disordered media
in any dimensions. This analysis is applied to two representative microscopic
models of subdiffusion: continuous-time random walks with heavy tailed waiting
times, and diffusion on fractals. Our results show that first-passage
observables provide tools to unambiguously discriminate between the two
possible microscopic scenarios of subdiffusion. Moreover we suggest experiments
based on first-passage observables which could help in determining the origin
of subdiffusion in complex media such as living cells, and discuss the
implications of anomalous transport to reaction kinetics in cells.Comment: 21 pages, 3 figures. Submitted versio
The role of microtubule movement in bidirectional organelle transport
We study the role of microtubule movement in bidirectional organelle
transport in Drosophila S2 cells and show that EGFP-tagged peroxisomes in cells
serve as sensitive probes of motor induced, noisy cytoskeletal motions.
Multiple peroxisomes move in unison over large time windows and show
correlations with microtubule tip positions, indicating rapid microtubule
fluctuations in the longitudinal direction. We report the first high-resolution
measurement of longitudinal microtubule fluctuations performed by tracing such
pairs of co-moving peroxisomes. The resulting picture shows that
motor-dependent longitudinal microtubule oscillations contribute significantly
to cargo movement along microtubules. Thus, contrary to the conventional view,
organelle transport cannot be described solely in terms of cargo movement along
stationary microtubule tracks, but instead includes a strong contribution from
the movement of the tracks.Comment: 24 pages, 5 figure
Visible and Infrared Image Registration Employing Line-Based Geometric Analysis
Abstract. We present a new method to register a pair of visible (ViS) and infrared (IR) images. Unlike most of existing systems that align interest points of two images, we align lines derived from edge pixels, because the interest points extracted from both images are not always identical, but most major edges detected from one image do appear in another image. To solve feature matching problem, we emphasize the geometric structure alignment of features (lines), instead of descriptor-based individual feature matching. This is due to the fact that image properties and patch statistics of corresponding features might be quite different, especially when one compares ViS image with long wave IR images (thermal information). However, the spatial layout of features for both images always preserves consistency. The last step of our algorithm is to compute the image transform matrix, given minimum 4 pairs of line correspondence. The comparative evaluation for algorithms demon-strates higher accuracy attained by our method when compared to the state-of-the-art approaches.
Pollution-Affected Fish Hepatic Transcriptome and Its Expression Patterns on Exposure to Cadmium
Individuals of the fish Lithognathus mormyrus were exposed to a series of pollutants including: benzo[a]pyrene, pp-DDE, Aroclor 1254, perfluorooctanoic acid, tributyl-tin chloride, lindane, estradiol, 4-nonylphenol, methyl mercury chloride, and cadmium chloride. Five mixtures of the pollutants were injected. Each mixture included one to three compounds. A microarray was constructed using 4608 L. mormyrus hepatic cDNAs cloned from the pollutant-exposed fish. Most clones (4456) were sequenced and assembled into 1494 annotated unique clones. The constructed microarray was used to identify changes in hepatic gene expression profile on exposure to cadmium administered to the fish by feeding or injections. Thirty-one unique clones showed altered expression levels on exposure to cadmium. Prominently differentially expressed genes included elastase 4, carboxypeptidase B, trypsinogen, perforin, complement C31, cytochrome P450 2K5, ceruloplasmin, carboxyl ester lipase, and metallothionein. Twelve sequences have no available annotation. Most genes (23) were downregulated and hypothesized to be affected by general toxicity due to the intensive cadmium exposure regime. The concept of an operational multigene cDNA microarray, aimed at routine and fast biomonitoring of multiple environmental threats, is outlined and the cadmium exposure experiment has been used to demonstrate functional and methodological aspects of the biomonitoring tool. The components of the outlined system include: (1) spotted array, composed of both pollution-affected and constitutively expressed genes, the latter are used for normalization; (2) standard, repeatable labeling procedure of a reference transcript population; and (3) biomarker indices derived from the profile of expression ratio across the pollution-affected genes, between the field-sampled transcript populations and the reference
- …