1 research outputs found

    Systemic and cerebral vascular endothelial growth factor levels increase in murine cerebral malaria along with increased calpain and caspase activity and can be reduced by erythropoietin treatment

    No full text
    The pathogenesis of cerebral malaria includes compromised microvascular perfusion, increased inflammation, cytoadhesion and endothelial activation. These events cause blood-brain barrier disruption and neuropathology and can be associated with the vascular endothelial growth factor (VEGF) signalling pathway. We studied this pathway in mice infected with Plasmodium berghei ANKA causing murine cerebral malaria with or without the use of erythropoietin as adjunct therapy. ELISA and western blotting was used for quantification of VEGF and relevant proteins in brain and plasma. Cerebral malaria increased levels of VEGF in brain and plasma and decreased plasma levels of soluble VEGF receptor 2. Erythropoietin treatment normalised VEGF receptor 2 levels and reduced brain VEGF levels. Hypoxia-inducible factor (HIF)-1α was significantly upregulated whereas cerebral HIF-2α and erythropoietin levels remained unchanged. Furthermore, we noticed increased caspase-3 and calpain activity in terminally ill mice, as measured by protease-specific cleavage of α-spectrin and p35. In conclusion, we detected increased cerebral and systemic VEGF as well as HIF-1α, which in the brain were reduced to normal in erythropoietin-treated mice. Also caspase and calpain activity was reduced markedly in erythropoietin-treated mice
    corecore