38 research outputs found

    The diversity of the microbiome impacts chronic lymphocytic leukemia development in mice and humans

    Get PDF
    The gut microbiota play a critical role in maintaining a healthy human body and their dysregulation is associated with various diseases. In this study, we investigated the influence of the gut microbiome diversity on chronic lymphocytic leukemia (CLL) development. Stool sample analysis of 59 CLL patients revealed individual and heterogeneous microbiome compositions, but allowed for grouping of patients according to their microbiome diversity. Interestingly, CLL patients with a lower microbiome diversity and an enrichment of bacteria linked to poor health suffered from a more advanced or aggressive form of CLL. In the Eμ-TCL1 mouse model of CLL, we observed a faster course of disease when mice were housed in high hygiene conditions. Shotgun DNA sequencing of fecal samples showed that this was associated with a lower microbiome diversity which was dominated by Mucispirillum and Parabacteroides genera in comparison to mice kept under lower hygiene conditions. In conclusion, we applied taxonomic microbiome analyses to demonstrate a link between the gut microbiome diversity and the clinical course of CLL in humans, as well as the development of CLL in mice. Our novel data serve as a basis for further investigations to decipher the pathological and mechanistic role of intestinal microbiota in CLL development

    Impact of CMV PCR Blips in Recipients of Solid Organ and Hematopoietic Stem Cell Transplantation

    Get PDF
    Background: Viral blips reflecting polymerase chain reaction (PCR) artefacts or transient low-level replication are well described in the human immunodeficiency virus setting. However, the epidemiology of such blips in transplant recipients screened for cytomegalovirus (CMV) with PCR remains uncertain and was investigated in a cohort of solid organ and hematopoietic stem cell recipients. // Methods: Eligible recipients had known donor/recipient CMV IgG serostatus, and 3 CMV PCRs ≥. The CMV PCR triplicates (3 consecutive CMV PCRs) were defined; the first CMV PCR was always negative, and the time between the second and third samples was 7 days ≤. A positive second but negative third sample represented a blip. Odds ratio (OR) for factors associated with a triplicate being a blip was estimated by binomial regression adjusted for repeated measurements. Whether blips affected the hazard ratio (HR) for subsequent CMV infection was determined with a Cox model. // Results: 851 recipients generated 3883 CMV PCR triplicates. The OR of a triplicate representing a blip decreased with increasing viral load of the second sample (vs 273 IU/mL; >273-910 IU/mL: odds ratio [OR], 0.2; 95% confidence interval [CI], 0.1-0.5; >910 IU/mL: OR, 0.08; 95% CI, 0.02-0.2; P ≤ 0.0002) and increased with intermediary-/low-risk serostatus (vs high risk) (OR, 2.8; 95% CI, 1.2-5.5; P = 0.01). Cumulative exposure to DNAemia in the CMV blips greater than 910 IU/mL indicated increased HR of subsequent CMV infection (HR, 4.6; 95% CI, 1.2-17.2; P = 0.02). // Conclusions: Cytomegalovirus blips are frequent; particularly when the viral load of the first positive PCR is < 910 IU/mL, and serostatus risk is intermediary/low. Accumulating blips suggest intermittent low-level replication. If blips are suspected, confirmation of ongoing replication before initiation of treatment is prudent

    Classification of death causes after transplantation (CLASS):Evaluation of methodology and initial results

    Get PDF
    Correct classification of death causes is an important component of transplant trials.We aimed to develop and validate a system to classify causes of death in hematopoietic stem cell (HSCT) and solid organ (SOT) transplant recipients.Case record forms (CRF) of fatal cases were completed, including investigator-designated cause of death. Deaths occurring in 2010 to 2013 were used for derivation; and were validated by deaths occurring in 2013 to 2015. Underlying cause of death (referred to as recorded underlying cause) was determined through a central adjudication process involving 2 external reviewers, and subsequently compared with the Danish National Death Cause Registry.Three hundred eighty-eight recipients died 2010 to 2015 (196 [51%] SOT and 192 [49%] HSCT). The main recorded underlying causes of death among SOT and HSCT were classified as cancer (20%, 48%), graft rejection/failure/graft-versus-host-disease (35%, 28%), and infections (20%, 11%). Kappa between the investigator-designated and the recorded underlying cause of death was 0.74 (95% CI 0.69-0.80) in derivation and comparable in the validation cohort. Death causes were concordant with the Danish National Death Cause Registry in 37.2% (95% CI 31.5-42.9) and 38.4% (95% CI 28.8-48.0) in the derivation and validation cohorts, respectively.We developed and validated a method to systematically and reliably classify the underlying cause of death among transplant recipients. There was a high degree of discordance between this classification and that in the Danish National Death Cause Registry

    The CLL-IPI applied in a population-based cohort

    No full text
    corecore