1,408 research outputs found

    Casimir force for cosmological domain walls

    Full text link
    We calculate the vacuum fluctuations that may affect the evolution of cosmological domain walls. Considering domain walls, which are classically stable and have interaction with a scalar field, we show that explicit symmetry violation in the interaction may cause quantum bias that can solve the cosmological domain wall problem.Comment: 15 pages, 2figure

    What is the Temperature Dependence of the Casimir Force between Real Metals?

    Get PDF
    The situation with the temperature corrections to the Casimir force between real metals of finite conductivity is reported. It is shown that the plasma dielectric function is well adapted to the Lifshitz formula and leads to reasonable results for real conductors. The Drude dielectric function which describes media with dissipation is found not to belong to the application range of the Lifshitz formula at nonzero temperature. For Drude metals the special modification of the zero-frequency term of this formula is suggested. The contradictory results on the subject in recent literature are analysed and explained.Comment: 10 pages, 1 figure, Contribution to the 5th Workshop on Quantum Field Theory under the Influence of External Conditions, Leipzig, Germany, 10-14 Sep 200

    Casimir force driven ratchets

    Full text link
    We explore the non-linear dynamics of two parallel periodically patterned metal surfaces that are coupled by the zero-point fluctuations of the electromagnetic field between them. The resulting Casimir force generates for asymmetric patterns with a time-periodically driven surface-to-surface distance a ratchet effect, allowing for directed lateral motion of the surfaces in sizeable parameter ranges. It is crucial to take into account inertia effects and hence chaotic dynamics which are described by Langevin dynamics. Multiple velocity reversals occur as a function of driving, mean surface distance, and effective damping. These transport properties are shown to be stable against weak ambient noise.Comment: 4 pages, 3 figure

    The Fundamental Commutator For Massless Particles

    Full text link
    It is discussed that the usual Heisenberg commutation relation (CR) is not a proper relation for massless particles and then an alternative is obtained. The canonical quantization of the free electromagnetic(EM)fields based on the field theoretical generalization of this alternative is carried out. Without imposing the normal ordering condition,the vacuum energy is automatically zero.This can be considered as a solution to the EM fields vacuum catastrophe and a step toward managing the cosmologial constant problem at least for the EM fields contribution to the state of vacuum.Comment: 12 pages,no figures,To appear in Mod.Phys.Ltt.

    Casimir potential of a compact object enclosed by a spherical cavity

    Get PDF
    We study the electromagnetic Casimir interaction of a compact object contained inside a closed cavity of another compact object. We express the interaction energy in terms of the objects' scattering matrices and translation matrices that relate the coordinate systems appropriate to each object. When the enclosing object is an otherwise empty metallic spherical shell, much larger than the internal object, and the two are sufficiently separated, the Casimir force can be expressed in terms of the static electric and magnetic multipole polarizabilities of the internal object, which is analogous to the Casimir-Polder result. Although it is not a simple power law, the dependence of the force on the separation of the object from the containing sphere is a universal function of its displacement from the center of the sphere, independent of other details of the object's electromagnetic response. Furthermore, we compute the exact Casimir force between two metallic spheres contained one inside the other at arbitrary separations. Finally, we combine our results with earlier work on the Casimir force between two spheres to obtain data on the leading order correction to the Proximity Force Approximation for two metallic spheres both outside and within one another.Comment: 12 pages, 6 figure

    Tunable Casimir repulsion with three dimensional topological insulators

    Full text link
    In this Letter, we show that switching between repulsive and attractive Casimir forces by means of external tunable parameters could be realized with two topological insulator plates. We find two regimes where a repulsive (attractive) force is found at small (large) distances between the plates, canceling out at a critical distance. For a frequency range where the effective electromagnetic action is valid, this distance appears at length scales corresponding to 1−ϵ(ω)(2/π)αθ1-\epsilon(\omega) (2/\pi)\alpha\theta.Comment: 9 pages, 5 figures, published version with auxiliary material. Featured in Physical Review Focu

    Casimir Energy and Entropy between perfect metal Spheres

    Full text link
    We calculate the Casimir energy and entropy for two perfect metal spheres in the large and short separation limit. We obtain nonmonotonic behavior of the Helmholtz free energy with separation and temperature, leading to parameter ranges with negative entropy, and also nonmonotonic behavior of the entropy with temperature and with the separation between the spheres. The appearance of this anomalous behavior of the entropy is discussed as well as its thermodynamic consequences.Comment: 10 pages and 8 figures. Accepted for publication in the Proceedings of the tenth conference on Quantum Field Theory under the influence of external conditions - QFEXT'1

    The Casimir Effect for Generalized Piston Geometries

    Full text link
    In this paper we study the Casimir energy and force for generalized pistons constructed from warped product manifolds of the type I×fNI\times_{f}N where I=[a,b]I=[a,b] is an interval of the real line and NN is a smooth compact Riemannian manifold either with or without boundary. The piston geometry is obtained by dividing the warped product manifold into two regions separated by the cross section positioned at R∈(a,b)R\in(a,b). By exploiting zeta function regularization techniques we provide formulas for the Casimir energy and force involving the arbitrary warping function ff and base manifold NN.Comment: 16 pages, LaTeX. To appear in the proceedings of the Conference on Quantum Field Theory Under the Influence of External Conditions (QFEXT11). Benasque, Spain, September 18-24, 201

    Worldline algorithms for Casimir configurations

    Get PDF
    We present improved worldline numerical algorithms for high-precision calculations of Casimir interaction energies induced by scalar-field fluctuations with Dirichlet boundary conditions for various Casimir geometries. Significant reduction of numerical cost is gained by exploiting the symmetries of the worldline ensemble in combination with those of the configurations. This facilitates high-precision calculations on standard PCs or small clusters. We illustrate our strategies using the experimentally most relevant sphere-plate and cylinder-plate configuration. We compute Casimir curvature effects for a wide parameter range, revealing the tight validity bounds of the commonly used proximity force approximation (PFA). We conclude that data analysis of future experiments aiming at a precision of 0.1% must no longer be based on the PFA. Revisiting the parallel-plate configuration, we find a mapping between the D-dimensional Casimir energy and properties of a random-chain polymer ensemble.Comment: 23 pages, 9 figure

    The Zeta Function Method and the Harmonic Oscillator Propagator

    Full text link
    We show how the pre-exponential factor of the Feynman propagator for the harmonic oscillator can be computed by the generalized ζ\zeta-function method. Besides, we establish a direct equivalence between this method and Schwinger's propertime method.Comment: 12 latex pages, no figure
    • …
    corecore