7,337 research outputs found

    Dihadron Fragmentation Functions in the NJL-jet model

    Get PDF
    The NJL-jet model provides a framework for calculating fragmentation functions without introducing ad hoc parameters. Here the NJL-jet model is extended to investigate dihadron fragmentation functions.Comment: 4 pages, 5 figures, Proceedings of 8th Circum-Pan-Pacific Symposium on High Energy Spin Physic

    UVMULTIFIT: A versatile tool for fitting astronomical radio interferometric data

    Full text link
    The analysis of astronomical interferometric data is often performed on the images obtained after deconvolution of the interferometer's point spread function (PSF). This strategy can be understood (especially for cases of sparse arrays) as fitting models to models, since the deconvolved images are already non-unique model representations of the actual data (i.e., the visibilities). Indeed, the interferometric images may be affected by visibility gridding, weighting schemes (e.g., natural vs. uniform), and the particulars of the (non-linear) deconvolution algorithms. Fitting models to the direct interferometric observables (i.e., the visibilities) is preferable in the cases of simple (analytical) sky intensity distributions. In this paper, we present UVMULTIFIT, a versatile library for fitting visibility data, implemented in a Python-based framework. Our software is currently based on the CASA package, but can be easily adapted to other analysis packages, provided they have a Python API. We have tested the software with synthetic data, as well as with real observations. In some cases (e.g., sources with sizes smaller than the diffraction limit of the interferometer), the results from the fit to the visibilities (e.g., spectra of close by sources) are far superior to the output obtained from the mere analysis of the deconvolved images. UVMULTIFIT is a powerful improvement of existing tasks to extract the maximum amount of information from visibility data, especially in cases close to the sensitivity/resolution limits of interferometric observations.Comment: 10 pages, 4 figures. Accepted in A&A. Code available at http://nordic-alma.se/support/software-tool

    Magnetocaloric effect in Gd/W thin film heterostructures

    Full text link
    In an effort to understand the impact of nanostructuring on the magnetocaloric effect, we have grown and studied gadolinium in MgO/W(50 A˚\textrm{\AA})/[Gd(400 A˚\textrm{\AA})/W(50 A˚\textrm{\AA})]8_8 heterostructures. The entropy change associated with the second order magnetic phase transition was determined from the isothermal magnetization for numerous temperatures and the appropriate Maxwell relation. The entropy change peaks at a temperature of 284 K with a value of approximately 3.4 J/kg-K for a 0-30 kOe field change; the full width at half max of the entropy change peak is about 70 K, which is significantly wider than that of bulk Gd under similar conditions. The relative cooling power of this nanoscale system is about 240 J/kg, somewhat lower than that of bulk Gd (410 J/kg). An iterative Kovel-Fisher method was used to determine the critical exponents governing the phase transition to be β=0.51\beta=0.51, and γ=1.75\gamma=1.75. Along with a suppressed Curie temperature relative to the bulk, the fact that the convergent value of γ\gamma is that predicted by the 2-D Ising model may suggest that finite size effects play an important role in this system. Together, these observations suggest that nanostructuring may be a promising route to tailoring the magnetocaloric response of materials

    The Effect of Certain Chemical Treatments on Photolytic Image Formation

    Get PDF
    A study of certain chemical baths and combinations of chemical baths was made to determine their effect on the print-out image of a specially-prepared conventional developing-out enlarging paper. These Print-out images were formed and made visible entirely from the photolytic effect of the image exposure. Arc lamp, tungsten lamp and electronic flash lamp exposures were made; arc lamp exposures were the most satisfactory. The chemical associated with the most image improvement was stannous chloride

    Dynamics of Spontaneous Magnetization Reversal in Exchange Biased Heterostructures

    Full text link
    The dependence of thermally induced spontaneous magnetization reversal on time-dependent cooling protocols was studied. Slower cooling and longer waiting close to the N\`{e}el temperature of the antiferromagnet (TNT_N) enhances the magnetization reversal. Cycling the temperature around TNT_N leads to a thermal training effect under which the reversal magnitude increases with each cycle. These results suggest that spontaneous magnetization reversal is energetically favored, contrary to our present understanding of positive exchange bias

    Uncertainties of predictions from parton distribution functions II: the Hessian method

    Get PDF
    We develop a general method to quantify the uncertainties of parton distribution functions and their physical predictions, with emphasis on incorporating all relevant experimental constraints. The method uses the Hessian formalism to study an effective chi-squared function that quantifies the fit between theory and experiment. Key ingredients are a recently developed iterative procedure to calculate the Hessian matrix in the difficult global analysis environment, and the use of parameters defined as components along appropriately normalized eigenvectors. The result is a set of 2d Eigenvector Basis parton distributions (where d=16 is the number of parton parameters) from which the uncertainty on any physical quantity due to the uncertainty in parton distributions can be calculated. We illustrate the method by applying it to calculate uncertainties of gluon and quark distribution functions, W boson rapidity distributions, and the correlation between W and Z production cross sections.Comment: 30 pages, Latex. Reference added. Normalization of Hessian matrix changed to HEP standar

    Dynamic Spin-Polarized Resonant Tunneling in Magnetic Tunnel Junctions

    Full text link
    Precisely engineered tunnel junctions exhibit a long sought effect that occurs when the energy of the electron is comparable to the potential energy of the tunneling barrier. The resistance of metal-insulator-metal tunnel junctions oscillates with an applied voltage when electrons that tunnel directly into the barrier's conduction band interfere upon reflection at the classical turning points: the insulator-metal interface, and the dynamic point where the incident electron energy equals the potential barrier inside the insulator. A model of tunneling between free electron bands using the exact solution of the Schroedinger equation for a trapezoidal tunnel barrier qualitatively agrees with experiment.Comment: 4pgs, 3 fig

    Scientific, Technical and Economic Committee for Fisheries. Review of scientific advice for 2012 - Part 2 (STECF-11-09) - Corrigendum

    Get PDF
    This corrigendum should replace the corresponding sections in the Part 2 of the STECF Review of advice for 2012 (STECF 2011. Review of scientific advice for 2012 – Part 2. Publications Office of the European Union, Luxembourg, EUR 24897 EN, JRC66020)

    Panle Discussion: The Impact of U.S. Trade Law Actions on Business Decisions in Taiwan

    Get PDF
    Transcript of the panel discussion on the impact of United States trade law on business decisions in Taiwan
    • …
    corecore